Back to main page
Case study background and problem formulations
Problem 1a: Nu-SVM
Minimize quadratic + cvar_risk
——————————————————————–
Quadratic = quadratic function specified by a unit matrix
Cvar_risk = Conditional Value-at-Risk specified by a matrix of scenarios
——————————————————————–
Data and solution in Run-File Environment
Problem Datasets | # of Variables | # of Scenarios | Objective Value | Solving Time, PC 2.66GHz (sec) | |||
---|---|---|---|---|---|---|---|
Dataset1 | Problem Statement | Data | Solution | 25 | 1,000 | 0.0 | 0.03 |
Problem Datasets | # of Variables | # of Scenarios | Objective Value | Solving Time, PC 3.50GHz (sec) | |||
---|---|---|---|---|---|---|---|
Dataset1 | Matlab code | Data | Solution | 25 | 1,000 | 0.0 | 0.04 |
2-fold crossvalidation
Minimize quadratic + cvar_risk
——————————————————————–
Quadratic = quadratic function specified by a unit matrix
Cvar_risk = Conditional Value-at-Risk specified by a matrix of scenarios
——————————————————————–
Download Problem Data
Problem Datasets | # of Variables | # of Scenarios | Objective Value | Solving Time, PC 3.50GHz (sec) | |||
---|---|---|---|---|---|---|---|
Dataset1 | Cycle statement | Data | Solution | 25 | 150 | -0.00249 | 0.02 |
Dataset2 | 25 | 150 | -0.00175 | 0.04 |
For the first pair of datasets (file “solution_problem_1.txt”) :
In-sample CVaR = cvar_risk(0.5,cutout(1,2,matrix_prior_scenarios)) = -9.9e-003 |
Out-of-sample CVaR = cvar_risk(0.5,takein(1,2,matrix_prior_scenarios)) = 1.85e-002 |
For the second pair of datasets (file “solution_problem_2.txt”) :
In-sample CVaR = cvar_risk(0.5,cutout(2,2,matrix_prior_scenarios)) = -7.02e-003 |
Out-of-sample cvar_risk(0.5,takein(2,2,matrix_prior_scenarios)) = 9.15e-003 |
CVaRs in-sample and CVaR out-of-sample are significantly different, i.e., there is a significant over-fitting of the model.
Minimize quadratic + var_risk
——————————————————————–
Quadratic = quadratic function specified by a unit matrix
Var_risk = Value-at-Risk specified by a matrix of scenarios
——————————————————————–
Data and solution in Run-File Environment
Problem Datasets | # of Variables | # of Scenarios | Objective Value | Solving Time, PC 2.66GHz (sec) | |||
---|---|---|---|---|---|---|---|
Dataset1 | Problem Statement | Data | Solution | 25 | 1,000 | -707.78409 | 0.04 |
Problem Datasets | # of Variables | # of Scenarios | Objective Value | Solving Time, PC 3.50GHz (sec) | |||
---|---|---|---|---|---|---|---|
Dataset1 | Matlab code | Data | Solution | 25 | 1,000 | -707.238 | 0.03 |
Minimize cvar_risk
Subject to
Quadratic = 1 (unity constraint)
——————————————————————–
Quadratic = quadratic function specified by a unit matrix
Cvar_risk = Conditional Value-at-Risk specified by a matrix of scenarios
——————————————————————–
# of Variables | # of Scenarios | Objective Value | Solving Time, PC 3.14GHz (sec) | ||||
Dataset | 25 | 1,000 | 0.056529 | 0.40 | |||
---|---|---|---|---|---|---|---|
Environments | |||||||
Run-File | Problem Statement | Data | Solution | ||||
Matlab Toolbox | Data | ||||||
Matlab Subroutines | Matlab Code | Data | |||||
R | R Code | Data |
Minimize var_risk
Subject to
Quadratic = 1 (unity constraint)
——————————————————————–
Quadratic = quadratic function specified by a unit matrix
Var_risk = Value-at-Risk specified by a matrix of scenarios
——————————————————————–
# of Variables | # of Scenarios | Objective Value | Solving Time, PC 3.14GHz (sec) | ||||
Dataset | 25 | 1,000 | -1053.893608 | 5.08 | |||
---|---|---|---|---|---|---|---|
Environments | |||||||
Run-File | Problem Statement | Data | Solution | ||||
Matlab Toolbox | Data | ||||||
Matlab Subroutines | Matlab Code | Data | |||||
R | R Code | Data |
Minimize quadratic + max_cvar_risk
——————————————————————–
Quadratic = quadratic function specified by a unit matrix
Max_cvar_risk = Maximum of Conditional Value-at-Risk functions specified by a set of matrices of scenarios
——————————————————————–
# of Variables | # of Scenarios | Objective Value | Solving Time, PC 3.14GHz (sec) | ||||
Dataset | 25 | 134 | 0.0 | 0.08 | |||
---|---|---|---|---|---|---|---|
Environments | |||||||
Run-File | Problem Statement | Data | Solution | ||||
Matlab Toolbox | Data | ||||||
Matlab Subroutines | Matlab Code | Data | |||||
R | R Code | Data |
Minimize quadratic + max_var_risk
——————————————————————–
Quadratic = quadratic function specified by a unit matrix
Max_var_risk = Maximum of Value-at-Risk functions specified by a set of matrices of scenarios
——————————————————————–
# of Variables | # of Scenarios | Objective Value | Solving Time, PC 3.14GHz (sec) | ||||
Dataset | 25 | 134 | -1,434.071147 | 0.55 | |||
---|---|---|---|---|---|---|---|
Environments | |||||||
Run-File | Problem Statement | Data | Solution | ||||
Matlab Toolbox | Data | ||||||
Matlab Subroutines | Matlab Code | Data | |||||
R | R Code | Data |
Minimize quadratic + cvar_difference
——————————————————————–
Quadratic = quadratic function specified by a unit matrix
cvar_difference = weighted difference of two CVaR functions specified by a set of matrices of scenarios
——————————————————————–
Data and solution in Run-File Environment
Problem Datasets | # of Variables | # of Scenarios | Objective Value | Solving Time, PC 2.66GHz (sec) | |||
---|---|---|---|---|---|---|---|
Dataset1 | Problem Statement | Data | Solution | 7 | 230 | -0.0010565 | 0.02 |
Problem Datasets | # of Variables | # of Scenarios | Objective Value | Solving Time, PC 3.50GHz (sec) | |||
---|---|---|---|---|---|---|---|
Dataset1 | Matlab code | Data | Solution | 7 | 230 | -0.0010565 | 0.01 |
Minimize cvar_risk
Subject to
L_Infinity_Norm <=1
——————————————————————–
Cvar_risk = Conditional Value-at-Risk specified by a matrix of scenarios
L_infinity_norm = L_infinity norm
——————————————————————–
Data and solution in Run-File Environment
Problem Datasets | # of Variables | # of Scenarios | Objective Value | Solving Time, PC 2.66GHz (sec) | |||
---|---|---|---|---|---|---|---|
Dataset1 | Problem Statement | Data | Solution | 25 | 1,000 | -0.318631 | 0.04 |
Problem Datasets | # of Variables | # of Scenarios | Objective Value | Solving Time, PC 3.50GHz (sec) | |||
---|---|---|---|---|---|---|---|
Dataset1 | Matlab code | Data | Solution | 25 | 1,000 | -0.318631 | 0.02 |
maximize – L1_Norm
Subject to
Linear = 0,
Envelope Constraint
——————————————————————–
L1_norm = L1 norm
Envelope Constraint = CVaR envelop set of constraints
——————————————————————–
# of Variables | # of Scenarios | Objective Value | Solving Time, PC 3.14GHz (sec) | ||||
Dataset | 1024 | 1,000 | -0.318631 | 0.01 | |||
---|---|---|---|---|---|---|---|
Environments | |||||||
Run-File | Problem Statement | Data | Solution | ||||
Matlab Toolbox | Data | ||||||
Matlab Subroutines | Matlab Code | Data | |||||
R | R Code | Data |
Subject to
Deltoidal_norm <=1
——————————————————————–
Cvar_risk = Conditional Value-at-Risk specified by a matrix of scenarios
Deltoidal_norm = Mixture of L1 and L_infinity norm
——————————————————————–
Data and solution in Run-File Environment
Problem Datasets | # of Variables | # of Scenarios | Objective Value | Solving Time, PC 2.66GHz (sec) | |||
---|---|---|---|---|---|---|---|
Dataset1 | Problem Statement | Data | Solution | 25 | 1,000 | -0.119276 | 0.04 |
Problem Datasets | # of Variables | # of Scenarios | Objective Value | Solving Time, PC 3.50GHz (sec) | |||
---|---|---|---|---|---|---|---|
Dataset1 | Matlab code | Data | Solution | 25 | 1,000 | -0.119276 | 0.04 |
Maximize -Dual_Deltoidal_Norm
Subject to
Linear = 0,
Envelope Constraint
——————————————————————–
Dual_deltoidal_norm = Norm dual to mixture of L1 and L_infinity norms
Envelope constraint = CVaR envelop set of constraints
——————————————————————–
# of Variables | # of Scenarios | Objective Value | Solving Time, PC 3.14GHz (sec) | ||||
Dataset | 1025 | 1,000 | -0.119278 | 0.28 | |||
---|---|---|---|---|---|---|---|
Environments | |||||||
Run-File | Problem Statement | Data | Solution | ||||
Matlab Toolbox | Data | ||||||
Matlab Subroutines | Matlab Code | Data | |||||
R | R Code | Data |
CVaR_Norm <=1
——————————————————————–
Cvar_risk = Conditional Value-at-Risk specified by a matrix of scenarios
CVaR_norm = Conditional Value-at-Risk specified on a point components
——————————————————————–
Data and solution in Run-File Environment
Problem Datasets | # of Variables | # of Scenarios | Objective Value | Solving Time, PC 2.66GHz (sec) | |||
---|---|---|---|---|---|---|---|
Dataset1 | Problem Statement | Data | Solution | 25 | 1,000 | -0.074699 | 0.02 |
Problem Datasets | # of Variables | # of Scenarios | Objective Value | Solving Time, PC 3.50GHz (sec) | |||
---|---|---|---|---|---|---|---|
Dataset1 | Matlab code | Data | Solution | 25 | 1,000 | -0.074699 | 0.02 |
Maximize -Dual_CVaR_Norm
Subject to
Linear = 0,
Envelope Constraint
——————————————————————–
Dual_CVaR_norm = maximum from L1 and L_Infinity Norms
Envelope constraint = CVaR envelop set of constraints
——————————————————————–
# of Variables | # of Scenarios | Objective Value | Solving Time, PC 3.14GHz (sec) | ||||
Dataset | 1025 | 1,000 | -0.073899 | 0.08 | |||
---|---|---|---|---|---|---|---|
Environments | |||||||
Run-File | Problem Statement | Data | Solution | ||||
Matlab Toolbox | Data | ||||||
Matlab Subroutines | Matlab Code | Data | |||||
R | R Code | Data |
CASE STUDY SUMMARY
This case study illustrates the application of the CVaR methodology to the Support Vector Machine (SVM) classification problem.
Given a training data



Tsyurmasto and Uryasev (2012) proposed Support Vector Machines based on Value-at-Risk (VaR) Measures. They obtained new SVM classifiers based on VaR risk measure for the following CVaR-based SVMs: Nu-SVM, Extended Nu-SVM, Robust Nu-SVM.
Case study contains the following problem formulations: 1) regularized CVaR, 2) regularized VaR, 3) CVaR minimization with unity constraint, 4) VaR minimization with unity constraint, 5) regularized robust CVaR minimization, 6) regularized robust VaR minimization. Problems 1,2,5,6 include additional quadratic regularization term.
References
• Tsyurmasto, P., Uryasev, S. (2012): Support Vector Machine Based on Value-at-Risk Measure. Working Paper.
Cortes, C. and V. Vapnik (1995): Support-vector networks, Machine Learning 20, 273-297.
• Scholkopf, B., Smola, A., Williamson, R., and P. Bartlett (2000): New support vector algorithms, Neural Computation 12, 1207-1245.
• Takeda A. and M. Sugiyama (2008): Nu-support vector machine as conditional value-at-risk minimization, in Proceedings 25th International Conference on Machine Learning, Morgan Kaufmann, Montreal, Quebec, Canada, 1056-1063.
• Tsyurmasto, P., Uryasev, S. (2012): Advanced Risk Measures in Estimation and Classification. Conference Proceedings, Vilnius, Lithuania, July, 2012.
• Wang, Y. (2009): Robust nu-Support Vector Machine Based on Worst-case Conditional Value-at-Risk Minimization. College of Finance, Zhejiang Gongshang University, Hangzhou 3100018, Zhejiang, China. Optimization Methods and