Case study background and problem formulations
PROBLEM1: problem_cvar_comp_abs
minimizing Cvar_comp_abs (CVaR Absolute Norm)
subject to
Ax ≤b (multiple linear constraints representing convex polyhedron set)
Box constraints (lower bounds on variables)
——————————————————————–——————
Cvar_comp_abs = CVaR component absolute
Box constraints = constraints on individual decision variables
——————————————————————–——————
———————————————
Alpha =0.8 , Solver Precision = 4
———————————————
Data and solution in Run-File Environment
Problem Datasets | # of Variables | # of Rows | Objective Value | Solving Time, PC 2.83GHz (sec) | |||
---|---|---|---|---|---|---|---|
Dataset1 | Problem statement | Data | Solution | 100 | 100,000 | 0.10589 | 2.95 |
Dataset2 | Problem statement | Data | Solution | 100 | 500,000 | 0.10834 | 15.32 |
Dataset3 | Problem statement | Data | Solution | 100 | 1,000,000 | 0.11259 | 29.79 |
Dataset4 | Problem statement | Data | Solution | 100 | 2,000,000 | 0.11259 | 148.05 |
Dataset5 | Problem statement | Data | Solution | 100 | 5,000,000 | 0.11370 | 464.88 |
Dataset6 | Problem statement | Data | Solution | 100 | 9,000,000 | 0.11370 | 829.81 |
Dataset7 | Problem statement | Data | Solution | 500 | 20,000 | 0.01783 | 6.53 |
Dataset8 | Problem statement | Data | Solution | 500 | 50,000 | 0.01828 | 13.13 |
Dataset9 | Problem statement | Data | Solution | 500 | 100,000 | 0.01828 | 32.75 |
Dataset10 | Problem statement | Data | Solution | 500 | 500,000 | 0.01856 | 113.04 |
Dataset11 | Problem statement | Data | Solution | 500 | 1,000,000 | 0.01856 | 303.28 |
Dataset12 | Problem statement | Data | Solution | 500 | 1,500,000 | 0.01856 | 475.0 |
Dataset13 | Problem statement | Data | Solution | 500 | 1,800,000 | 0.01856 | 489.68 |
Dataset14 | Problem statement | Data | Solution | 1000 | 20,000 | 0.00866 | 18.62 |
Dataset15 | Problem statement | Data | Solution | 1000 | 50,000 | 0.00867 | 34.40 |
Dataset16 | Problem statement | Data | Solution | 1000 | 100,000 | 0.00877 | 87.67 |
Dataset17 | Problem statement | Data | Solution | 1000 | 200,000 | 0.00878 | 113.81 |
Dataset18 | Problem statement | Data | Solution | 1000 | 500,000 | 0.00878 | 431.14 |
Dataset19 | Problem statement | Data | Solution | 1000 | 900,000 | 0.00878 | 443.57 |
NOTE: Problem statements can be simplified using MultiConstraint.
Data and solution in MATLAB Environment
Problem Datasets | # of Variables | # of Rows | Objective Value | Solving Time, PC 3.50GHz (sec) | |||
---|---|---|---|---|---|---|---|
Dataset1 | Matlab code | Data | Solution | 100 | 100,000 | 0.10589 | 2.85 |
———————————————
Alpha =0.9, Solver Precision = 7
———————————————
Problem Datasets | # of Variables | # of Rows | Objective Value | Solving Time, PC 2.83GHz (sec) | |||
---|---|---|---|---|---|---|---|
Dataset1 | Problem statement | Data | Solution | 100 | 100,000 | 0.10589 | 4.89 |
Dataset2 | Problem statement | Data | Solution | 100 | 500,000 | 0.10833 | 25.23 |
Dataset3 | Problem statement | Data | Solution | 100 | 1,000,000 | 0.11259 | 41.27 |
Dataset4 | Problem statement | Data | Solution | 100 | 2,000,000 | 0.11259 | 160.24 |
Dataset5 | Problem statement | Data | Solution | 100 | 5,000,000 | 0.11370 | 442.18 |
Dataset6 | Problem statement | Data | Solution | 100 | 9,000,000 | 0.11370 | 847.96 |
NOTE: Problem statements can be simplified using MultiConstraint.
Data and solution in MATLAB Environment
Problem Datasets | # of Variables | # of Rows | Objective Value | Solving Time, PC 3.50GHz (sec) | |||
---|---|---|---|---|---|---|---|
Dataset1 | Matlab code | Data | Solution | 100 | 100,000 | 0.10589 | 4.79 |
Dataset2 | Matlab code | Data | Solution | 100 | 500,000 | 0.10833 | 24.73 |
Dataset3 | Matlab code | Data | Solution | 100 | 1,000,000 | 0.11259 | 40.14 |
——————————————————
Alpha =0.955279, Solver Precision = 7
——————————————————
Data and solution in Run-File Environment
Problem Datasets | # of Variables | # of Rows | Objective Value | Solving Time, PC 2.83GHz (sec) | |||
---|---|---|---|---|---|---|---|
Dataset1 | Problem statement | Data | Solution | 500 | 20,000 | 0.01783 | 21.83 |
Dataset2 | Problem statement | Data | Solution | 500 | 50,000 | 0.01828 | 40.46 |
Dataset3 | Problem statement | Data | Solution | 500 | 100,000 | 0.01828 | 94.30 |
Dataset4 | Problem statement | Data | Solution | 500 | 500,000 | 0.01855 | 717.9 |
Dataset5 | Problem statement | Data | Solution | 500 | 1,000,000 | 0.01855 | 1295.71 |
Dataset6 | Problem statement | Data | Solution | 500 | 1,500,000 | 0.01855 | 1739.97 |
Dataset7 | Problem statement | Data | Solution | 500 | 1,800,000 | 0.01855 | 1643.09 |
NOTE: Problem statements can be simplified using MultiConstraint.
Alpha =0.968377, Solver Precision = 7
——————————————————
Download Problem Data
Problem Datasets | # of Variables | # of Rows | Objective Value | Solving Time, PC 2.83GHz (sec) | |||
---|---|---|---|---|---|---|---|
Dataset1 | Problem statement | Data | Solution | 1000 | 20,000 | 0.00866 | 92.55 |
Dataset2 | Problem statement | Data | Solution | 1000 | 50,000 | 0.00867 | 273.03 |
Dataset3 | Problem statement | Data | Solution | 1000 | 100,000 | 0.00877 | 408.29 |
Dataset4 | Problem statement | Data | Solution | 1000 | 200,000 | 0.00877 | 1363.49 |
Dataset5 | Problem statement | Data | Solution | 1000 | 500,000 | 0.00877 | 2617.07 |
Dataset6 | Problem statement | Data | Solution | 1000 | 900,000 | 0.00877 | 4654.56 |
NOTE: Problem statements can be simplified using MultiConstraint.
PROBLEM2: problem_mix_L1_L_Infinity
minimizing [(1-lambda)*polynom_abs+ lambda*max_comp_abs]
subject to
Ax ≤b (multiple linear constraints representing convex polyhedron set)
Box constraints (lower bounds on variables)
——————————————————————–——————
polynom_abs = polynomial absolute function
max_comp_abs=maximum component absolute function
Box constraints = constraints on individual decision variables
——————————————————————–——————
——————————————————
Lambda =0.90909, Solver Precision = 7
——————————————————
Download Problem Data
Problem Datasets | # of Variables | # of Rows | Objective Value | Solving Time, PC 2.83GHz (sec) | |||
---|---|---|---|---|---|---|---|
Dataset1 | Problem statement | Data | Solution | 100 | 100,000 | 1.01459 | 6.62 |
Dataset2 | Problem statement | Data | Solution | 100 | 500,000 | 1.05439 | 27.53 |
Dataset3 | Problem statement | Data | Solution | 100 | 1,000,000 | 1.06657 | 47.81 |
Dataset4 | Problem statement | Data | Solution | 100 | 2,000,000 | 1.07531 | 168.45 |
Dataset5 | Problem statement | Data | Solution | 100 | 5,000,000 | 1.09822 | 468.64 |
Dataset6 | Problem statement | Data | Solution | 100 | 9,000,000 | 1.10039 | 851.35 |
NOTE: Problem statements can be simplified using MultiConstraint.
——————————————————
Lambda =0.95744, Solver Precision = 7
——————————————————
Download Problem Data
Problem Datasets | # of Variables | # of Rows | Objective Value | Solving Time, PC 2.83GHz (sec) | |||
---|---|---|---|---|---|---|---|
Dataset1 | Problem statement | Data | Solution | 500 | 20,000 | 0.38609 | 35.07 |
Dataset2 | Problem statement | Data | Solution | 500 | 50,000 | 0.38966 | 70.52 |
Dataset3 | Problem statement | Data | Solution | 500 | 100,000 | 0.39170 | 128.08 |
Dataset4 | Problem statement | Data | Solution | 500 | 500,000 | 0.39654 | 744.98 |
Dataset5 | Problem statement | Data | Solution | 500 | 1,000,000 | 0.39868 | 1571.72 |
Dataset6 | Problem statement | Data | Solution | 500 | 1,500,000 | 0.39956 | 2574.43 |
Dataset7 | Problem statement | Data | Solution | 500 | 1,800,000 | 0.40005 | 2909.3 |
NOTE: Problem statements can be simplified using MultiConstraint.
——————————————————
Lambda =0.96923, Solver Precision = 7
——————————————————
Download Problem Data
Problem Datasets | # of Variables | # of Rows | Objective Value | Solving Time, PC 2.83GHz (sec) | |||
---|---|---|---|---|---|---|---|
Dataset1 | Problem statement | Data | Solution | 1000 | 20,000 | 0.26782 | 161.54 |
Dataset2 | Problem statement | Data | Solution | 1000 | 50,000 | 0.26938 | 318.55 |
Dataset3 | Problem statement | Data | Solution | 1000 | 100,000 | 0.27064 | 475.09 |
Dataset4 | Problem statement | Data | Solution | 1000 | 200,000 | 0.27165 | 1209.68 |
Dataset5 | Problem statement | Data | Solution | 1000 | 500,000 | 0.27194 | 3165.31 |
Dataset6 | Problem statement | Data | Solution | 1000 | 900,000 | 0.27194 | 5612.34 |
NOTE: Problem statements can be simplified using MultiConstraint.
minimizing quadratic (square of L_2 norm)
subject to
Ax ≤b (multiple linear constraints representing convex polyhedron set)
Box constraints (lower bounds on variables)
——————————————————————–——————
quadratic = quadratic function
Box constraints = constraints on individual decision variables
——————————————————————–——————
——————————
Solver Precision = 7
——————————
Download Problem Data
Problem Datasets | # of Variables | # of Rows | Objective Value | Solving Time, PC 2.83GHz (sec) | |||
---|---|---|---|---|---|---|---|
Dataset1 | Problem statement | Data | Solution | 100 | 100,000 | 1.03483 | 2.47 |
Dataset2 | Problem statement | Data | Solution | 100 | 500,000 | 1.11188 | 15.83 |
Dataset3 | Problem statement | Data | Solution | 100 | 1,000,000 | 1.14674 | 30.70 |
Dataset4 | Problem statement | Data | Solution | 100 | 2,000,000 | 1.15551 | 134.57 |
Dataset5 | Problem statement | Data | Solution | 100 | 5,000,000 | 1.20912 | 324.14 |
Dataset6 | Problem statement | Data | Solution | 100 | 9,000,000 | 1.21178 | 914.29 |
Dataset7 | Problem statement | Data | Solution | 500 | 20,000 | 0.15307 | 4.30 |
Dataset8 | Problem statement | Data | Solution | 500 | 50,000 | 0.15612 | 21.83 |
Dataset9 | Problem statement | Data | Solution | 500 | 100,000 | 0.15752 | 25.26 |
Dataset10 | Problem statement | Data | Solution | 500 | 500,000 | 0.16135 | 115.8 |
Dataset11 | Problem statement | Data | Solution | 500 | 1,000,000 | 0.16346 | 291.92 |
Dataset12 | Problem statement | Data | Solution | 500 | 1,500,000 | 0.16393 | 335.87 |
Dataset13 | Problem statement | Data | Solution | 500 | 1,800,000 | 0.16425 | 388.55 |
Dataset14 | Problem statement | Data | Solution | 1000 | 20,000 | 0.05064 | 0.63 |
Dataset15 | Problem statement | Data | Solution | 1000 | 50,000 | 0.05064 | 0.94 |
Dataset16 | Problem statement | Data | Solution | 1000 | 100,000 | 0.05064 | 1.50 |
Dataset17 | Problem statement | Data | Solution | 1000 | 200,000 | 0.05064 | 2.57 |
Dataset18 | Problem statement | Data | Solution | 1000 | 500,000 | 0.05064 | 5.87 |
Dataset19 | Problem statement | Data | Solution | 1000 | 900,000 | 0.05064 | 162.24 |
NOTE: Problem statements can be simplified using MultiConstraint.
CASE STUDY SUMMARY
This case study considers the projection problems with various norms on a polyhedron set given by a system of linear inequalities. In particular, we consider the Scaled CVaR Absolute Norm introduced in Pavlikov and Uryasev (2013). The Scaled CVaR Absolute Norm in




















Then, Problem 1 solves the projection problems with CVaR Absolute Norm for dimensions






Problem 2 solves projection problems with weighted average of













Problem 3 solves projection problems with square of


References
• Pavlikov K, and S. Uryasev (2013): CVaR Absolute Norm and Applications in Optimization.
Research Report # 2013-1.
• Rockafellar, R.T. and S. Uryasev (2013): The Fundamental Risk Quadrangle in Risk
Management, Optimization, and Statistical Estimation. Surveys in Operations Research and
Management Science, 18 (to appear).
• Rockafellar, R. T. and Uryasev, S. (2000), “Optimization of conditional value-at-risk”,
Journal of Risk , Vol. 2, pp. 21–41.
• Gotoh, J. and S. Uryasev (2013): Approximation of Euclidean norm by LP-representable
norms and applications. Draft paper.