Back to main page
Case study background and problem formulations
…\PSG\MATLAB\CS_Sparse_Reconstruction_SPARCO: M-files for CS_Sparse_Reconstruction_Sparco_Matlab
PROBLEM: L2 form
Minimize 0.5*Quadratic + Const*Linear (minimizing L2-error of regression plus linear regularization term)
subject to
Box constraints (bounds on variables)
——————————————————————–
Quadratic = External Quadratic Penalty Function
Box constraints = constraints on individual decision variables
——————————————————————–
Problem “problem_2_L2_dblExt”
Sources of Data
- Buckheit, J., Donoho, D.L.: Wavelets and Statistics, chap. Wavelab and reproducible research.
Springer-Verlag, Berlin, New York (1995). URL http://citeseer.ist.psu.edu/article/buckheit95wavelab.html - Chen, S.S., Donoho, D.L., Saunders, M.A.: Atomic decomposition by basis pursuit. SIAM J. Sci. Comput. 20(1),
33-61 (1998). URL https://epubs.siam.org/doi/abs/10.1137/S003614450037906X - Donoho, D.L., Johnstone, I.M.: Ideal spatial adaptation by wavelet shrinkage. Biometrika 81(3), 425-455 (1994).
URL http://citeseer.ist.psu.edu/donoho93ideal.html
Problem Datasets | Const | # of Variables | # of Scenarios | Objective Value | Solving Time, PC 2.66GHz (sec) | ||
---|---|---|---|---|---|---|---|
Dataset1 | Problem Statement | Solution | 20 | 1024 | 1024 | 2.978E+03 | 0.001 |
Dataset2 | Problem Statement | Solution | 10 | 1024 | 1024 | 2.312E+03 | 0.01 |
Dataset3 | Problem Statement | Solution | 1 | 1024 | 1024 | 4.153E+02 | 0.01 |
Dataset4 | Problem Statement | Solution | 0.1 | 1024 | 1024 | 4.471E+01 | 0.01 |
Dataset5 | Problem Statement | Solution | 0.01 | 1024 | 1024 | 4.503E+00 | 0.19 |
Problem “problem_3_L2_dblExt”
Sources of Data
- Berg, E.van den, Friedlander, M.P.: SPARCO: A toolbox for testing sparse reconstruction algorithms (2008).
URL http://www.cs.ubc.ca/labs/scl/sparco/ - Berg, E.van den, Friedlander, M.P., Hennenfent, G., Herrmann, F., Saab, R., Yilmaz, O.:
Sparco: A testing framework for sparse reconstruction.
Tech. Rep. TR-2007-20, Dept. Computer Science, University of British Columbia, Vancouver (2007)
Problem Datasets | Const | # of Variables | # of Scenarios | Objective Value | Solving Time, PC 2.66GHz (sec) | ||
---|---|---|---|---|---|---|---|
Dataset1 | Problem Statement | Solution | 20 | 2048 | 1024 | 2.369E+03 | 0.02 |
Dataset2 | Problem Statement | Solution | 10 | 2048 | 1024 | 1.308E+03 | 0.02 |
Dataset3 | Problem Statement | Solution | 1 | 2048 | 1024 | 1.780E+02 | 0.05 |
Dataset4 | Problem Statement | Solution | 0.1 | 2048 | 1024 | 2.164E+01 | 0.18 |
Dataset5 | Problem Statement | Solution | 0.01 | 2048 | 1024 | 2.217E+00 | 2.57 |
Problem “problem_5_L2_dblExt”
Sources of Data
- Berg, E.van den, Friedlander, M.P.: SPARCO: A toolbox for testing sparse reconstruction algorithms (2008).
URL http://www.cs.ubc.ca/labs/scl/sparco/ - Berg, E.van den, Friedlander, M.P., Hennenfent, G., Herrmann, F., Saab, R., Yilmaz, O.:
Sparco: A testing framework for sparse reconstruction. Tech. Rep. TR-2007-20,
Dept. Computer Science, University of British Columbia, Vancouver (2007)
Problem Datasets | Const | # of Variables | # of Scenarios | Objective Value | Solving Time, PC 2.66GHz (sec) | ||
---|---|---|---|---|---|---|---|
Dataset1 | Problem Statement | Solution | 20 | 2048 | 300 | 2.104E+03 | 0.04 |
Dataset2 | Problem Statement | Solution | 10 | 2048 | 300 | 1.226E+03 | 0.04 |
Dataset3 | Problem Statement | Solution | 1 | 2048 | 300 | 1.580E+02 | 0.17 |
Dataset4 | Problem Statement | Solution | 0.1 | 2048 | 300 | 1.778E+01 | 1.67 |
Dataset5 | Problem Statement | Solution | 0.01 | 2048 | 300 | 1.810E+00 | 19.24 |
Problem “problem_6_L2_dblExt”
Sources of Data
- Candes, E.J., Romberg, J.: Practical signal recovery from random projections. In: Wavelet Applications
in Signal and Image Processing XI, Proc. SPIE Conf. 5914. (2004)
Problem Datasets | Const | # of Variables | # of Scenarios | Objective Value | Solving Time, PC 2.66GHz (sec) | ||
---|---|---|---|---|---|---|---|
Dataset1 | Problem Statement | Solution | 20000 | 2048 | 600 | 1.295E+07 | 0.5 |
Dataset2 | Problem Statement | Solution | 10000 | 2048 | 600 | 9.652E+06 | 0.8 |
Dataset3 | Problem Statement | Solution | 1000 | 2048 | 600 | 1.586E+06 | 3.6 |
Dataset4 | Problem Statement | Solution | 100 | 2048 | 600 | 1.722E+05 | 36.8 |
Dataset5 | Problem Statement | Solution | 10 | 2048 | 600 | 1.745E+04 | 385.6 |
Problem “problem_7_L2_dblExt”
Sources of Data
- Candes, E., Romberg, J.: L1-magic. http://www.l1-magic.org/ (2007)
Problem Datasets | Const | # of Variables | # of Scenarios | Objective Value | Solving Time, PC 2.66GHz (sec) | ||
---|---|---|---|---|---|---|---|
Dataset1 | Problem Statement | Solution | 0.2 | 2560 | 600 | 2.252E+00 | 0.07 |
Dataset2 | Problem Statement | Solution | 0.1 | 2560 | 600 | 1.562E+00 | 0.10 |
Dataset3 | Problem Statement | Solution | 0.05 | 2560 | 600 | 8.905E-01 | 0.11 |
Dataset4 | Problem Statement | Solution | 0.02 | 2560 | 600 | 3.825E-01 | 0.15 |
Dataset5 | Problem Statement | Solution | 0.01 | 2560 | 600 | 1.956E-01 | 0.19 |
Problem “problem_8_L2_dblExt”
Sources of Data
- Candes, E., Romberg, J.: L1-magic. http://www.l1-magic.org/(2007)
Problem Datasets | Const | # of Variables | # of Scenarios | Objective Value | Solving Time, PC 2.66GHz (sec) | ||
---|---|---|---|---|---|---|---|
Dataset1 | Problem Statement | Solution | 0.2 | 2560 | 600 | 4.381E+00 | 0.09 |
Dataset2 | Problem Statement | Solution | 0.1 | 2560 | 600 | 3.799E+00 | 0.11 |
Dataset3 | Problem Statement | Solution | 0.05 | 2560 | 600 | 3.156E+00 | 0.13 |
Dataset4 | Problem Statement | Solution | 0.01 | 2560 | 600 | 2.470E+00 | 0.23 |
Problem “problem_9_L2_dblExt”
Sources of Data
- Chen, S.S., Donoho, D.L., Saunders, M.A.: Atomic decomposition by basis pursuit. SIAM J. Sci. Comput. 20(1), 33-61 (1998).
URL https://epubs.siam.org/doi/abs/10.1137/S003614450037906X - Donoho, D.L., Johnstone, I.M.: Ideal spatial adaptation by wavelet shrinkage. Biometrika 81(3), 425-455 (1994).
URL http://citeseer.ist.psu.edu/donoho93ideal.html
Problem Datasets | Const | # of Variables | # of Scenarios | Objective Value | Solving Time, PC 2.66GHz (sec) | ||
---|---|---|---|---|---|---|---|
Dataset1 | Problem Statement | Solution | 10 | 128 | 128 | 1.676E+02 | 0.8 |
Dataset2 | Problem Statement | Solution | 5 | 128 | 128 | 1.161E+02 | 2.4 |
Dataset3 | Problem Statement | Solution | 1 | 128 | 128 | 3.647E+01 | 3.9 |
Dataset4 | Problem Statement | Solution | 0.05 | 128 | 128 | 5.563E+00 | 6.5 |
Dataset5 | Problem Statement | Solution | 0.01 | 128 | 128 | 3.999E+00 | 6.5 |
Problem “problem_10_L2_dblExt”
Sources of Data
- Chen, S.S., Donoho, D.L., Saunders, M.A.: Atomic decomposition by basis pursuit. SIAM J. Sci. Comput. 20(1), 33-61 (1998).
URL https://epubs.siam.org/doi/abs/10.1137/S003614450037906X - Donoho, D.L., Johnstone, I.M.: Ideal spatial adaptation by wavelet shrinkage. Biometrika 81(3), 425-455 (1994).
URL http://citeseer.ist.psu.edu/donoho93ideal.html
Problem Datasets | Const | # of Variables | # of Scenarios | Objective Value | Solving Time, PC 2.66GHz (sec) | ||
---|---|---|---|---|---|---|---|
Dataset1 | Problem Statement | Solution | 10 | 1024 | 1024 | 2.040E+03 | 3.3 |
Dataset2 | Problem Statement | Solution | 1 | 1024 | 1024 | 6.638E+02 | 33.9 |
Dataset3 | Problem Statement | Solution | 0.5 | 1024 | 1024 | 4.115E+02 | 29.7 |
Dataset4 | Problem Statement | Solution | 0.1 | 1024 | 1024 | 9.543E+01 | 342.5 |
Dataset5 | Problem Statement | Solution | 0.01 | 1024 | 1024 | 1.147E+01 | 1619.9 |
Problem “problem_11_L2_dblExt”
Sources of Data
- Berg, E.van den, Friedlander, M.P.: SPARCO: A toolbox for testing sparse reconstruction algorithms (2008).
URL http://www.cs.ubc.ca/labs/scl/sparco/ - Berg, E.van den, Friedlander, M.P., Hennenfent, G., Herrmann, F., Saab, R., Yilmaz, O.:
Sparco: A testing framework for sparse reconstruction. Tech. Rep. TR-2007-20,
Dept. Computer Science, University of British Columbia, Vancouver (2007)
Problem Datasets | Const | # of Variables | # of Scenarios | Objective Value | Solving Time, PC 2.66GHz (sec) | ||
---|---|---|---|---|---|---|---|
Dataset1 | Problem Statement | Solution | 100 | 1024 | 256 | 1.801E+03 | 0.01 |
Dataset2 | Problem Statement | Solution | 10 | 1024 | 256 | 2.333E+02 | 0.06 |
Dataset3 | Problem Statement | Solution | 1 | 1024 | 256 | 2.396E+01 | 0.62 |
Dataset4 | Problem Statement | Solution | 0.1 | 1024 | 256 | 2.403E+00 | 7.39 |
Problem “problem_401_L2_dblExt”
Sources of Data
- Database of Creative Commons licensed sounds: URL https://freesound.org/
Problem Datasets | Const | # of Variables | # of Scenarios | Objective Value | Solving Time, PC 2.66GHz (sec) | ||
---|---|---|---|---|---|---|---|
Dataset1 | Problem Statement | Solution | 2 | 57344 | 29166 | 2.431E+02 | 1.2 |
Dataset2 | Problem Statement | Solution | 1 | 57344 | 29166 | 2.273E+02 | 3.1 |
Dataset3 | Problem Statement | Solution | 0.5 | 57344 | 29166 | 1.849E+02 | 8.2 |
Dataset4 | Problem Statement | Solution | 0.2 | 57344 | 29166 | 1.152E+02 | 23.5 |
Problem “problem_402_L2_dblExt”
Sources of Data
- Database of Creative Commons licensed sounds: URL https://freesound.org/
Problem Datasets | Const | # of Variables | # of Scenarios | Objective Value | Solving Time, PC 2.66GHz (sec) | ||
---|---|---|---|---|---|---|---|
Dataset1 | Problem Statement | Solution | 2 | 57344 | 29166 | 2.643E+02 | 1.8 |
Dataset2 | Problem Statement | Solution | 1 | 57344 | 29166 | 2.473E+02 | 4.4 |
Dataset3 | Problem Statement | Solution | 0.5 | 57344 | 29166 | 2.007E+02 | 13.9 |
Dataset4 | Problem Statement | Solution | 0.2 | 57344 | 29166 | 1.248E+02 | 32.1 |
Problem “problem_403_L2_dblExt”
Sources of Data
- Berg, E.van den, Friedlander, M.P.: SPARCO: A toolbox for testing sparse reconstruction algorithms (2008).
URL http://www.cs.ubc.ca/labs/scl/sparco/ - Berg, E.van den, Friedlander, M.P., Hennenfent, G., Herrmann, F., Saab, R., Yilmaz, O.:
Sparco: A testing framework for sparse reconstruction. Tech. Rep. TR-2007-20,
Dept. Computer Science, University of British Columbia, Vancouver (2007)
Problem Datasets | Const | # of Variables | # of Scenarios | Objective Value | Solving Time, PC 2.66GHz (sec) | ||
---|---|---|---|---|---|---|---|
Dataset1 | Problem Statement | Solution | 10 | 196608 | 196608 | 1.124E+04 | 2.7 |
Dataset2 | Problem Statement | Solution | 3.3 | 196608 | 196608 | 6.174E+03 | 3.0 |
Dataset3 | Problem Statement | Solution | 1 | 196608 | 196608 | 2.530E+03 | 3.1 |
Dataset4 | Problem Statement | Solution | 0.33 | 196608 | 196608 | 1.136E+03 | 10.0 |
Dataset5 | Problem Statement | Solution | 0.1 | 196608 | 196608 | 4.802E+02 | 35.2 |
Problem “problem_601_L2_dblExt”
Sources of Data
- Takhar, D., Laska, J.N., Wakin, M., Duarte, M., Baron, D., Sarvotham, S., Kelly, K.K., Baraniuk, R.G.:
A new camera architecture based on optical-domain compression.
In: Proceedings of the IS&T/SPIE Symposium on Electronic Imaging: Computational Imaging, vol. 6065 (2006).
Problem Datasets | Const | # of Variables | # of Scenarios | Objective Value | Solving Time, PC 2.66GHz (sec) | ||
---|---|---|---|---|---|---|---|
Dataset1 | Problem Statement | Solution | 10000 | 4096 | 3200 | 8.474E+05 | 420.7 |
Dataset2 | Problem Statement | Solution | 1000 | 4096 | 3200 | 1.948E+05 | 598.0 |
Dataset3 | Problem Statement | Solution | 500 | 4096 | 3200 | 1.187E+05 | 808.1 |
Dataset4 | Problem Statement | Solution | 200 | 4096 | 3200 | 5.741E+04 | 1460.1 |
Dataset5 | Problem Statement | Solution | 100 | 4096 | 3200 | 3.170E+04 | 1444.7 |
Problem “problem_602_L2_dblExt”
Sources of Data
- Takhar, D., Laska, J.N., Wakin, M., Duarte, M., Baron, D., Sarvotham, S., Kelly, K.K., Baraniuk, R.G.:
A new camera architecture based on optical-domain compression.
In: Proceedings of the IS&T/SPIE Symposium on Electronic Imaging: Computational Imaging, vol. 6065 (2006).
Problem Datasets | Const | # of Variables | # of Scenarios | Objective Value | Solving Time, PC 2.66GHz (sec) | ||
---|---|---|---|---|---|---|---|
Dataset1 | Problem Statement | Solution | 1000 | 4096 | 3200 | 3.165E+05 | 543.6 |
Dataset2 | Problem Statement | Solution | 500 | 4096 | 3200 | 2.086E+05 | 848.9 |
Dataset3 | Problem Statement | Solution | 200 | 4096 | 3200 | 1.049E+05 | 1117.9 |
Dataset4 | Problem Statement | Solution | 100 | 4096 | 3200 | 5.745E+04 | 2038.8 |
Problem “problem_603_L2_dblExt”
Sources of Data
- Figueiredo, M., Nowak, R., Wright, S.: Gradient projection for sparse reconstruction: Application to compressed
sensing and other inverse problems. Selected Topics in Signal Processing, IEEE Journal of 1(4), 586-597 (2007).
DOI 10.1109/JSTSP.2007.910281. URL http://www.lx.it.pt/~mtf/GPSR
Problem Datasets | Const | # of Variables | # of Scenarios | Objective Value | Solving Time, PC 2.66GHz (sec) | ||
---|---|---|---|---|---|---|---|
Dataset1 | Problem Statement | Solution | 5 | 4096 | 1024 | 2.963E+02 | 0.21 |
Dataset2 | Problem Statement | Solution | 2 | 4096 | 1024 | 1.893E+02 | 0.20 |
Dataset3 | Problem Statement | Solution | 1 | 4096 | 1024 | 1.210E+02 | 0.20 |
Dataset4 | Problem Statement | Solution | 0.1 | 4096 | 1024 | 2.145E+01 | 0.79 |
Dataset5 | Problem Statement | Solution | 0.01 | 4096 | 1024 | 2.544E+00 | 6.64 |
Problem “problem_701_L2_dblExt”
Sources of Data
- Figueiredo, M., Nowak, R., Wright, S.: Gradient projection for sparse reconstruction: Application to compressed
sensing and other inverse problems. Selected Topics in Signal Processing, IEEE Journal of 1(4), 586-597 (2007).
DOI 10.1109/JSTSP.2007.910281. URL http://www.lx.it.pt/~mtf/GPSR
Problem Datasets | Const | # of Variables | # of Scenarios | Objective Value | Solving Time, PC 2.66GHz (sec) | ||
---|---|---|---|---|---|---|---|
Dataset1 | Problem Statement | Solution | 10 | 65536 | 65536 | 6.911E+03 | 0.59 |
Dataset2 | Problem Statement | Solution | 5 | 65536 | 65536 | 4.336E+03 | 0.67 |
Dataset3 | Problem Statement | Solution | 2 | 65536 | 65536 | 2.110E+03 | 0.75 |
Dataset4 | Problem Statement | Solution | 1 | 65536 | 65536 | 1.198E+03 | 0.88 |
Problem “problem_702_L2_dblExt”
Sources of Data
- Figueiredo, M., Nowak, R., Wright, S.: Gradient projection for sparse reconstruction: Application to compressed
sensing and other inverse problems. Selected Topics in Signal Processing, IEEE Journal of 1(4), 586-597 (2007).
DOI 10.1109/JSTSP.2007.910281. URL http://www.lx.it.pt/~mtf/GPSR
Problem Datasets | Const | # of Variables | # of Scenarios | Objective Value | Solving Time, PC 2.66GHz (sec) | ||
---|---|---|---|---|---|---|---|
Dataset1 | Problem Statement | Solution | 0.05 | 16384 | 16384 | 2.484E+00 | 0.30 |
Dataset2 | Problem Statement | Solution | 0.04 | 16384 | 16384 | 2.470E+00 | 0.55 |
Dataset3 | Problem Statement | Solution | 0.02 | 16384 | 16384 | 2.087E+00 | 1.30 |
Dataset4 | Problem Statement | Solution | 0.01 | 16384 | 16384 | 1.332E+00 | 1.88 |
Dataset5 | Problem Statement | Solution | 0.001 | 16384 | 16384 | 1.628E-01 | 4.64 |
Problem “problem_902_L2_dblExt”
Sources of Data
- Hennenfent, G., Herrmann, F.J.: Sparseness-constrained data continuation
with frames: Applications to missing traces
and aliased signals in 2/3-D. In: SEG International Exposition and 75th Annual Meeting (2005).
URL https://library.seg.org/doi/abs/10.1190/1.2148142 - Hennenfent, G., Herrmann, F.J.: Simply denoise: waveeld reconstruction via coarse nonuniform sampling.
Tech. rep., UBC Earth & Ocean Sciences (2007) - Herrmann, F.J., Hennenfent, G.: Non-parametric seismic data recovery with curvelet frames.
Tech. rep., UBC Earth & Ocean Sciences Department (2007). TR-2007-1
URL https://academic.oup.com/gji/article-abstract/173/1/233/554282
Problem Datasets | Const | # of Variables | # of Scenarios | Objective Value | Solving Time, PC 2.66GHz (sec) | ||
---|---|---|---|---|---|---|---|
Dataset1 | Problem Statement | Solution | 0.1 | 1000 | 200 | 1.007E-01 | 0.02 |
Dataset2 | Problem Statement | Solution | 0.01 | 1000 | 200 | 1.668E-02 | 0.02 |
Dataset3 | Problem Statement | Solution | 0.001 | 1000 | 200 | 1.734E-03 | 0.10 |
Problem “problem_903_L2_dblExt”
Sources of Data
- Dossal, C., Mallat, S.: Sparse spike deconvolution with minimum scale. In: Proceedings of Signal Processing with
Adaptive Sparse Structured Representations, pp. 123-126. Rennes, France (2005).
URL http://spars05.irisa.fr/ACTES/PS2-11.pdf
Problem Datasets | Const | # of Variables | # of Scenarios | Objective Value | Solving Time, PC 2.66GHz (sec) | ||
---|---|---|---|---|---|---|---|
Dataset1 | Problem Statement | Solution | 100 | 1024 | 1024 | 8.695E+02 | 2.1 |
Dataset2 | Problem Statement | Solution | 10 | 1024 | 1024 | 1.177E+02 | 9.8 |
Dataset3 | Problem Statement | Solution | 1 | 1024 | 1024 | 1.279E+01 | 16.8 |
Dataset4 | Problem Statement | Solution | 0.1 | 1024 | 1024 | 1.294E+00 | 52.1 |
Dataset5 | Problem Statement | Solution | 0.01 | 1024 | 1024 | 1.295E-01 | 587.0 |
CASE STUDY SUMMARY
This case study solves sparse reconstruction problems from SPARCO toolbox using External Functions Tool of PSG and operator given by SPARCO toolbox for implicit working with matrices.
SPARCO is a suite of problems for testing and benchmarking algorithms for sparse signal reconstruction, Berg et al. (2007, 2008). It is also an environment for creating new test problems. Also a suite of standard linear operators is provided from which new problems can be assembled. SPARCO is implemented entirely in MATLABand is self contained.
Problems included in the SPARCO toolbox were initially considered by different authors in different application areas: imaging, compressed sensing, geophysics, information compressing, etc. Relevant references can be found in the SPARCO toolbox.
The objective of Sparse Reconstruction is to find a decision vector which has a small number of non-zero components and satisfies exactly or almost exactly a system of linear equations. There are many variants of optimization formulations of such problems. These formulations are described in paper Boyko et al. (2011).
We solved problems included in SPARCO toolbox in so called “LASSO-O” formulation. “LASSO-O” minimizes L2-error of regression with adding to objective a regularization linear term which is equal to the sum of absolute values of variables. The regularization term is intended to “suppress” components with small values. To investigate property of solution we solved every problem with different weight of regularization linear term and calculated cardinality and max functions in optimal points. These problems can be easy solved by methods for unconstrained optimization.
SPARCO toolbox provides a set of operators to deal with data. Problems were solved in PSG MATLAB Environment with the PSG External Function subroutine to avoid generating full matrix and to save time and memory.
We reported performance of AORDA Portfolio Safeguard (PSG) 64 bit version conducted on PC with 2.83 MHz processor.
objective: objective_new, linearize = 1
meanabs_pen_obj(matrix_ab602)
constraint: constraint_card, upper_bound = 700, linearize = 1
polynom_abs_S(matrix_card4096)
0 * cardn_1(1.,matrix_card4096)
0 * cardn_2(0.1,matrix_card4096)
0 * cardn_3(0.01,matrix_card4096)
0 * cardn_4(0.001,matrix_card4096)
0 * cardn_5(0.0001,matrix_card4096)
0 * cardn_6(0.00001,matrix_card4096)
0 * max_comp_pos_7(matrix_card4096)
0 * max_comp_neg_8(matrix_card4096)
box_of_variables: lowerbounds = -40, upperbounds = +40
Solver: van, precision = 4, stages = 6, timelimit = 3600
Timing: Data_loading_time = 11.97, Preprocessing_time = 0.69, Solving_time = 272.61
Variables: optimal_point = point_problem_602_Relaxed_700
Objective: objective_new = 9.71029929057e-005
Constraint: constraint_card = 6.968284830013e+002 [-3.171516998665e+000]
Function: meanabs_pen_obj(matrix_ab602) = 9.710299290575e-005
Function: polynom_abs_s(matrix_card4096) = 6.968284830013e+002
Function: cardn_1(0.100000E+01,matrix_card4096) = 1.420000000000e+002
Function: cardn_2(0.100000E+00,matrix_card4096) = 7.890000000000e+002
Function: cardn_3(0.100000E-01,matrix_card4096) = 3.043000000000e+003
Function: cardn_4(0.100000E-02,matrix_card4096) = 3.964000000000e+003
Function: cardn_5(0.100000E-03,matrix_card4096) = 4.079000000000e+003
Function: cardn_6(0.100000E-04,matrix_card4096) = 4.095000000000e+003
Function: max_comp_pos_7(matrix_card4096) = 1.616083034336e+001
Function: max_comp_neg_8(matrix_card4096) = 6.562008879305e+000
• Berg, E.V., Friedlander, M.P., Hennenfent, G., Herrmann, F., Saab, R., and O., Yilmaz (2007): SPARCO: A testing framework for sparse reconstruction. Tech. Rep. TR-2007-20, Dept. Computer Science, University of British Columbia, Vancouver.
• Berg, E.V., and M.P., Friedlander (2008): SPARCO: A toolbox for testing sparse reconstruction algorithms. URL http://www.cs.ubc.ca/labs/scl/sparco/
• Boyko, N., Karamemis, G., Kuzmenko, V. and S. Uryasev (2011): Sparse Signal Reconstruction: a Cardinality Approach. Submitted for publication (Download the publication).