Case study background and problem formulations
PROBLEM1: problem_St_Pen
Minimize st_pen(spline_sum) (function Standard Penalty applied to Spline Sum)
Calculate:
meanabs_pen(spline_sum) (function Mean Absolute Penalty applied to Spline Sum)
spline_sum (function Spline Sum)
——————————————————————–————————————————
st_pen = Standard Penalty
meanabs_pen = Mean Absolute Penalty
spline_sum = Spline Sum calculates spline value depending upon regression variables for every scenario
——————————————————————–————————————————
———————————————————————————
Third Degree Polynomial Spline Consisting of 5 Piecies
———————————————————————————
# of Variables | # of Scenarios | Objective Value | Solving Time, PC 3.14GHz (sec) | ||||
Dataset | 20 | 4371 | 0.18954 | 0.12 | |||
---|---|---|---|---|---|---|---|
Environments | |||||||
Run-File | Problem Statement | Data | Solution | ||||
Matlab Toolbox | Data | ||||||
Matlab Subroutines | Matlab Code | Data | |||||
R | R Code | Data |
———————————————————————————
Third Degree Polynomial Spline Consisting of 30 Piecies
———————————————————————————
# of Variables | # of Scenarios | Objective Value | Solving Time, PC 3.14GHz (sec) | ||||
Dataset | 120 | 4371 | 0.1888 | 3.82 | |||
---|---|---|---|---|---|---|---|
Environments | |||||||
Run-File | Problem Statement | Data | Solution | ||||
Matlab Toolbox | Data | ||||||
Matlab Subroutines | Matlab Code | Data | |||||
R | R Code | Data |
PROBLEM2: problem_Meanabs_Pen
Minimize meanabs_pen(spline_sum) (function Mean Absolute Penalty applied to Spline Sum)
Calculate:
st_pen(spline_sum) (function Standard Penalty applied to Spline Sum)
spline_sum (function Spline Sum)
——————————————————————–————————————————
meanabs_pen = Mean Absolute Penalty
st_pen = Standard Penalty
spline_sum = Spline Sum calculates spline value depending upon regression variables for every scenario
———————————————————————————
Third Degree Polynomial Spline Consisting of 5 Piecies
———————————————————————————
# of Variables | # of Scenarios | Objective Value | Solving Time, PC 3.14GHz (sec) | ||||
Dataset | 20 | 4371 | 0.13590 | 0.06 | |||
---|---|---|---|---|---|---|---|
Environments | |||||||
Run-File | Problem Statement | Data | Solution | ||||
Matlab Toolbox | Data | ||||||
Matlab Subroutines | Matlab Code | Data | |||||
R | R Code | Data |
————————————————————————————
Third Degree Polynomial Spline Consisting of 30 Piecies
————————————————————————————
# of Variables | # of Scenarios | Objective Value | Solving Time, PC 3.14GHz (sec) | ||||
Dataset | 120 | 4371 | 0.13496 | 2.67 | |||
---|---|---|---|---|---|---|---|
Environments | |||||||
Run-File | Problem Statement | Data | Solution | ||||
Matlab Toolbox | Data | ||||||
Matlab Subroutines | Matlab Code | Data | |||||
R | R Code | Data |
Subroutine for spline transformation with figures
———————————————————————————
# of Variables | # of Scenarios | Objective Value | Solving Time, PC 3.14GHz (sec) | ||||
Dataset | 120 | 4371 | 0.13496 | 2.67 | |||
---|---|---|---|---|---|---|---|
Environments | |||||||
Matlab Subroutines | Matlab Code | Data | |||||
R | R Code | Data |
Maximize logexp_sum(spline_sum) (function Logarithms Exponents Sum applied to Spline Sum)
Calculate:
logexp_sum(spline_sum) (function Logarithms Exponents Sum applied to Spline Sum)
logistic(spline_sum) (function Logistic applied to Spline Sum)
——————————————————————–————————————————
logexp_sum = Logarithms Exponents Sum
logistic = Logistic calculate values of logistic function of spline approximation for every scenario
spline_sum = Spline Sum calculates spline value depending upon regression variables for every scenario
——————————————————————–————————————————
———————————————————————————
Third Degree Polynomial Spline Consisting of 5 Piecies
———————————————————————————
# of Variables | # of Scenarios | Objective Value | Solving Time, PC 3.14GHz (sec) | ||||
Dataset | 20 | 14920 | -0.68571 | 0.53 | |||
---|---|---|---|---|---|---|---|
Environments | |||||||
Run-File | Problem Statement | Data | Solution | ||||
Matlab Toolbox | Data | ||||||
Matlab Subroutines | Matlab Code | Data | |||||
R | R Code | Data |
————————————————————————————
Third Degree Polynomial Spline Consisting of 30 Piecies
————————————————————————————
# of Variables | # of Scenarios | Objective Value | Solving Time, PC 3.14GHz (sec) | ||||
Dataset | 120 | 14920 | -0.68481 | 10.45 | |||
---|---|---|---|---|---|---|---|
Environments | |||||||
Run-File | Problem Statement | Data | Solution | ||||
Matlab Toolbox | Data | ||||||
Matlab Subroutines | Matlab Code | Data | |||||
R | R Code | Data |
Subroutine for spline transformation with figures
———————————————————————————
# of Variables | # of Scenarios | Objective Value | Solving Time, PC 3.14GHz (sec) | ||||
Dataset | 120 | 4371 | 0.13496 | 2.67 | |||
---|---|---|---|---|---|---|---|
Environments | |||||||
Matlab Subroutines | Matlab Code | Data | |||||
R | R Code | Data |
CASE STUDY SUMMARY
Splines are calibrated to approximate one dimension observation data. Input data for building a spline are vectors containing data of independent and dependent variables and parameters defining number of knots and smoothing degree of the spline. The splines are calibrated by minimizing various error functions, such as mean square error, mean absolute error, and maximum likelihood logistic regression function (PSG functions: st_pen, meanabs_pen, and logexp_sum, accordingly).