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Recent theoretical studies have shown that a relaxation algorithm can be used to find noncooperative equilibria of synchronous
infinite games with nonlinear payoff functions and coupled constraints. In this study, we introduce an improvement to the algorithm,
such as the steepest-descent step-size control, for which the convergence of the algorithm is proved. The algorithm is then tested on
several economic applications. In particular, a River Basin Pollution problem is considered where coupled environmental constraints
are crucial for the relevant model definition. Numerical runs demonstrate fast convergence of the algorithm for a wide range of
parameters.
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1. Introduction

The focus of this paper is on studying computational-
economics methods to find Nash equilibria in infinite
games of varying complexity. Game theory problems are
renowned for being hard to solve, especially multi-player,
non-zero sum, and dynamic games. Such games are even
more difficult to solve if the payoff functions are non-
differentiable and/or the constraints are coupled.1 Games
of that kind are typical of environmental economics2 and
we envisage this to be an important application area of the
methods studied in this paper.

We use the optimum response functions [2,3,12,17,23]
to construct an algorithm to search for a Nash equilib-
rium point. This is an attractive approach because it relies
on minimization of a multivariate function; a well studied
topic. At each iteration of such an algorithm the multi-
variate Nikaido–Isoda function [8] is minimized using a
standard nonlinear programming routine. The paper [23]
has set the foundations for a sequential improvement of the
Nikaido–Isoda function through the relaxation algorithm.
It was proved that the relaxation algorithm converges to a
Nash equilibrium for a wide class of games that includes
non-differential payoffs and coupled constraints.

An important variation of the relaxation algorithm is
considered in this paper. We investigate a steepest-descent
step-size control of the relaxation algorithm. The con-

∗ Research supported by VUW GSBGM and IGC grants.
1 We use this term defined by Rosen in [19] to describe a set of relations

that constrain players’ joint actions.
2 For a non-differentiable environmental game see [11]; for a coupled

constraint game solved via Rosen’s algorithm see [6].

vergence of this modified relaxation algorithm is formally
proved and numerically tested.

In this paper we also conduct numerical testing of the
relaxation algorithm [23] and of its modified counterpart.
In particular, we solve a River Basin Pollution game [6],
which includes coupled constraints. The numerical experi-
ments reported here were conducted using customarily de-
veloped software in the MATHEMATICA and MATLAB pro-
gramming environments. Some of the material and ex-
amples provided in this paper are based on the working
paper [4].

The River Basin Pollution game solved in this paper
can be treated as a generic example of how to ensure
agents’ environmental compliance. Lagrange multipliers are
computed as a byproduct of a constrained equilibrium and
can be used as Pigouvian nominal taxes [18] to compel
agents to limit their polluting activities. This approach
to environmental modeling and management can be used
in situations in which a local legislator can be identified
as an elective representative of different interest groups,
see [10].

Other approaches to reduce pollution are also popular.
Charging a fixed price for each unit of pollution is a possi-
bility, see, e.g., [7]. One may also target economic variables
(e.g., supply, demand, transportation) with penalties for fail-
ure to comply with regulation, see [14]. Another approach
is to build a model that includes marketable pollution per-
mits. To formulate such a model, and find an equilibrium,
variational inequalities are applied in [13].3

3 For more on how this approach is used for the description and solution
of equilibrium problems arising in economics and operations research
see, for example, [5,15].
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The organization of this paper is as follows. Section 2
has a tutorial character and provides an introduction to
some basic concepts. Section 3 presents the relaxation al-
gorithm [23]. In section 4, the convergence proof for the
relaxation algorithm with an optimized step size is given.
Section 5 provides tests and examples of how the algorithm
works. The paper ends with conclusions in section 6. All
definitions, theorems, and such are numbered consecutively
in each section.

2. Definitions and concepts

There are i = 1, . . . ,n players participating in a game.
Each player can take an individual action, which is rep-
resented by a vector xi in the Euclidean space Rmi . All
players together can take a collective action, which is a
combined vector x = (x1, . . . ,xn) ∈ Rm1 × · · · × Rmn .
We adopt the convention that one player’s action has a
subscript (e.g., xi), and a collective action is in bold-
face (e.g., x). Let us denote by Xi ⊆ Rmi an action
set of player i and use φi :Xi → R for his payoff func-
tion. Denote the collective action set by X . By definition,
X ⊆ Xi × · · · × Xn ⊆ Rm1 × · · · × Rmn = Rm. Let
x = (x1, . . . ,xn) and y = (y1, . . . , yn) be elements of the
collective action set X1 × · · · ×Xn. An element

(yi|x) ≡ (x1, . . . ,xi−1, yi,xi+1, . . . ,xn)

of the collective action set can be interpreted as a collection
of actions when the ith agent “tries” yi while the remaining
agents are playing xj , j = 1, 2, . . . , i− 1, i+ 1, . . . ,n.

Definition 2.1. Let X ⊆ Xi × · · · × Xn ⊆ Rm1 × · · · ×
Rmn = Rm be the collective action set, and the functions
φi :Xi → R be the payoff functions of players i = 1, . . . ,n.
A point x∗ = (x∗1 , . . . ,x∗n) is called the Nash equilibrium
point,4 if, for each i,

φi(x∗) = max
(xi|x∗)∈X

φi(xi|x∗). (1)

Now, we introduce the Nikaido–Isoda function [8].

Definition 2.2. Let φi be the payoff function of player i.
Then the Nikaido–Isoda function Ψ : (X1 × · · · × Xn) ×
(X1 × · · · ×Xn)→ R is defined as

Ψ(x, y) =
n∑
i=1

[
φi(yi|x)− φi(x)

]
. (2)

It follows from the definition of the Nikaido–Isoda func-
tion that

Ψ(x, x) ≡ 0. (3)

Each summand of the Nikaido–Isoda function can be
thought of as the change in the payoff of a player when his

4 Notice that this definition allows for coupled constraint equilibria,
see [19]. We compute an equilibrium of this kind in section 5.3.

action changes from xi to yi while all other players continue
to play according to x. The function thus represents the
sum of these changes in payoff functions. Note that the
maximum value that this function can take by changing y,
for a given x, is always nonnegative, owing to (3). Also,
the function is nonpositive for all feasible y when x∗ is a
Nash equilibrium point, since, at an equilibrium, no player
can make a unilateral improvement to their payoff, and so
each summand in this case can be zero at most.

From here, we reach the conclusion that when the
Nikaido–Isoda function cannot be made (significantly) pos-
itive for a given x, we have (approximately) reached the
Nash equilibrium point. We use this observation in con-
structing a termination condition for our algorithm; that is,
we choose an ε such that, when maxy∈X Ψ(xs, y) < ε, we
have achieved the equilibrium xs to a sufficient degree of
precision.

Definition 2.3. An element x∗ ∈ X is referred to as a Nash
normalized equilibrium point5 if

max
y∈X

Ψ(x∗, y) = 0. (4)

The two following lemmas establish a relationship be-
tween Nash equilibrium and Nash normalized equilibrium
points:

Lemma 2.4 [1]. A Nash normalized equilibrium point is
also a Nash equilibrium point.

Lemma 2.5 [1]. A Nash equilibrium point is a Nash nor-
malized equilibrium point if the collective action set X
satisfies

X = X1 × · · · ×Xn, Xi ⊂ Rmi . (5)

An algorithm which uses the Nikaido–Isoda function to
compute the Nash normalized equilibrium will be presented
in the next section. Because of lemma 2.4, the computed
point is obviously a Nash equilibrium. Here we note that
at each iteration of the algorithm we wish to move towards
a point which is an “improvement” on the one that we are
at. To this end, let us put forward the following definition.

Definition 2.6. The optimum response function (possibly
multi-valued) at the point x is

Z(x) = arg max
y∈X

Ψ(x, y), x,Z(x) ∈ X. (6)

In brief terms, this function returns the set of players’
actions whereby they all attempt to unilaterally maximize
their payoffs.

We now introduce some more technical definitions to be
used in the convergence theorems.

5 We follow Aubin’s terminology [1]. Notice that Rosen [19] also defines
a normalized equilibrium, which has a different meaning.
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Definition 2.7 [16,21]. Let X be a convex subset of the
Euclidean space Rm. A continuous function f :X → R
is called weakly convex on X if for all x ∈ X , y ∈ X ,
0 6 α 6 1 the following inequality6 holds:

αf (x) + (1−α)f (y) > f (αx + (1−α)y) +α(1−α)r(x, y),

where the remainder r :X ×X → R satisfies

r(x, y)
‖x− y‖ → 0, as x→ z, y→ z, (7)

for all z ∈ X .

Definition 2.8. A function f (x) is called weakly concave
on X if the function −f (x) is weakly convex on X .

Let Ψ :X ×X → R be a function defined on a product
X×X , where X is a convex closed subset of the Euclidean
space Rm. Further, we consider that Ψ(x, z) is weakly
convex on X with respect to the first argument, i.e.,

αΨ(x, z) + (1− α)Ψ(y, z)>Ψ(αx + (1− α)y, z)

+ α(1− α)rz(x, y) (8)

for all x, y, z ∈ X , 0 6 α 6 1, and

rz(x, y)
‖x− y‖ → 0, as ‖x− y‖ → 0, for all z ∈ X.

We suppose that the function Ψ(z, y) is weakly concave
with respect to the second argument on X , i.e.,

αΨ(z, x) + (1− α)Ψ(z, y)6Ψ(z,αx + (1− α)y)

+ α(1− α)µz(x, y) (9)

for all x, y, z ∈ X , 0 6 α 6 1, and also

µz(x, y)
‖x− y‖ → 0 as ‖x− y‖ → 0, for all z ∈ X.

Definition 2.9. The function Ψ(x, y) is referred to as
weakly convex-concave, if it satisfies conditions (8) and (9).

The family of weakly convex-concave functions includes
the family of smooth functions [16] as well as many non-
differentiable functions.

We now present an elementary example to illustrate
these definitions.

Example 2.10. Let us consider a convex quadratic function
f :R→ R

f (x) = x2.

This function is both weakly convex and weakly concave.

6 Recall that for a function to be “just” convex we require

αf (x) + (1− α)f (y) > f (αx + (1− α)y).

This function is convex, i.e.,

αf (x) + (1− α)f (y) > f (αx+ (1− α)y).

Consequently, the function f (x) is weakly convex with
r(x, y) = 0.

To show that the function f (x) is weakly concave, we
must find an µ(x, y) such that, for all x, y ∈ R and α ∈
[0, 1],

αf (x) + (1− α)f (y)6 f (αx+ (1− α)y)

+ α(1− α)µ(x, y).

That is, if and only if

αx2 + (1− α)y2 6 (αx+ (1− α)y)2

+ α(1− α)µ(x, y)

⇔ αx2 + (1− α)y2 6 α2x2 + (1− α)2y2

+ 2α(1− α)xy + α(1− α)µ(x, y)

⇔ α(1− α)x2 + α(1− α)y2 − 2α(1− α)xy

6 α(1− α)µ(x, y)

⇔ (x− y)2 6 µ(x, y).

So it is sufficient to select µ(x, y) = (x− y)2. Also, check
that

µ(x, y)
‖x− y‖ =

(x− y)2

|x− y| = |x− y| → 0, as |x− y| → 0.

So we conclude that f (x) = x2 is weakly concave. (How-
ever, as this is a one-variable function, it cannot be weakly
convex-concave.)

The functions rz(x, y), µz(x, y) were introduced with the
concept of weak convex-concavity. In the case of Ψ(x, y)
being a twice continuously differentiable function with re-
spect to both arguments onX×X , the residual terms satisfy
(see [21])

ry(x, y) =
1
2

〈
A(x, x)(x− y), x− y

〉
+ o1

(
‖x− y‖2

)
(10)

and

µx(y, x) =
1
2

〈
B(x, x)(x− y), x− y

〉
+ o2

(
‖x− y‖2

)
, (11)

where A(x, x) = Ψxx(x, y)|y=x is the Hessian of the
Nikaido–Isoda function with respect to the first argument
and B(x, x) = Ψyy(x, y)|y=x is the Hessian of the Nikaido–
Isoda function with respect to the second argument, both
evaluated at y = x. Moreover, if the function Ψ(x, y) is
convex with respect to x, then o1(‖x − y‖2) = 0, and
if the function Ψ(x, y) is concave with respect to y then
o2(‖x− y‖2) = 0. These observations simplify evaluation
of the remainder terms, which will be needed for assessment
of the convergence conditions of the relaxation algorithms
considered in the next two sections.

The key convergence condition is that the difference of
the residual terms (weakly) dominates a strictly increasing
function

ry(x, y)− µx(y, x) > β
(
‖x− y‖

)
, x, y ∈ X , (12)
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where β is the strictly increasing function (i.e., β(t2) >
β(t1) if t2 > t1) and β(0) = 0. This relationship implies7

existence and uniqueness of the normalized Nash equilib-
rium point on a convex compact set X .

If the function Ψ(x, y) is convex-concave, then (see [21])

ry(x, y)− µx(y, x) = 〈Q(x, x), x− y〉, (13)

where

Q(x, x) =A(x, x)−B(x, x)

= Ψxx(x, y)|y=x −Ψyy(x, y)|y=x.

The equality (13) implies that the convergence condi-
tion (12) follows from the strict positive-definiteness of the
matrix Q(x, x), i.e.,

〈Q(x, x), x− y〉 > ν||x− y||2, (14)

where ν is a positive constant. Also, positive-definiteness
of the matrix Q(x, x) implies existence and uniqueness of
the normalized Nash equilibrium point.

3. The relaxation algorithm

3.1. Statement of the algorithm

Suppose we wish to find a Nash equilibrium of a game
and we have some initial estimate of it, say x0, and Z(x)
single-valued. The relaxation algorithm is given by the
following formula:

xs+1 = (1− αs)xs + αsZ
(
xs
)
, s = 0, 1, 2, . . . , (15)

where 0 < αs 6 1. The iterate at step s+ 1 is constructed
as a weighted average of the improvement point Z(xs) and
the current point xs. This averaging ensures convergence
of the algorithm under certain conditions, as stated in the
following theorems 3.1 and 4.2.

It is interesting to note that we can consider the algo-
rithm as either performing a static optimization or calcu-
lating successive actions of players in convergence to an
equilibrium in a real time process. If all payoffs are known
to us, we can directly find the Nash equilibrium using the
relaxation algorithm. However, if we only have access to
one player’s payoff function and all players’ past actions,
then at each stage in the real time process we choose the
optimum response for that player, assuming that the other
players will play as they had in the previous period. In
this way, convergence to the Nash normalized equilibrium
will occur as s → ∞. By taking sufficiently many itera-
tions of the algorithm, it is our aim to determine the Nash
equilibrium x∗ with a specified precision.

7 This is so because the corresponding gradient map is strictly anti-
monotone (see theorem 4 in [21]).

3.2. Conditions for existence of a Nash equilibrium and
convergence of the relaxation algorithm

The following theorem states the conditions of conver-
gence for the relaxation algorithm. The conditions may
look rather restrictive, but in fact a large class of games
satisfy them.

Theorem 3.1 [23]. There exists a unique normalized Nash
equilibrium point to which the algorithm (15) converges if:

(1) X is a convex compact subset of Rm,

(2) the Nikaido–Isoda function Ψ :X×X → R is a weakly
convex-concave function and Ψ(x, x) = 0 for x ∈ X ,

(3) the optimum response function Z(x) is single-valued
and continuous on X ,

(4) the residual term rz(x, y) is uniformly continuous on X
with respect to z for all x, y ∈ X ,

(5) the residual terms satisfy

ry(x, y)− µx(y, x) > β
(
‖x− y‖

)
, x, y ∈ X , (16)

where β(0) = 0 and β is a strictly increasing function
(i.e., β(t2) > β(t1) if t2 > t1),

(6) the relaxation parameters αs satisfy

(a) αs > 0,

(b)
∑∞
s=0 αs =∞,

(c) αs → 0 as s→∞.

Notice that the convex set X is able to represent coupled
constraints and that the key condition (16) may be satisfied
in case of non-differentiable payoff functions.8

4. The relaxation algorithm with an optimized step size

4.1. Step size optimization

In order for the algorithm to converge, we may choose
any sequence {αs} satisfying the final condition of theo-
rem 3.1. However, it is of computational importance to
attempt to optimize the convergence rate.

Suitable step sizes may be obtained by trial and error,
and we have found that using a constant step of αs ≡ 0, 5
leads to a quick convergence in most of our experiments.
In this case, we can think of the αs as being constant un-
til our convergence conditions are reached, and thereafter
decaying with factors 1

2 , 1
3 , 1

4 , . . . .
Further, we suggest a method for a step size optimiza-

tion.

8 Proving validity of condition 5 for non-differentiable functions can
be difficult. However, an approach similar to the one used to prove
diagonal strict concavity in [11] can be recommended.
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Definition 4.1. Suppose that we reach xs at iteration s.
Then α∗s is one-step optimal if it minimizes the optimum
response function at xs+1. That is, if

α∗s = arg min
α∈[0,1)

{
max
y∈X

Ψ
(
xs+1(α), y

)}
. (17)

(Recall that xs+1 depends on α.)

This method is intuitively appealing. Indeed, we are try-
ing to minimize the maximum of the Nikaido–Isoda func-
tion to satisfy the equilibrium condition. We have found
that optimizing the step sizes leads to fewer iterations, but
that each step takes longer to complete than when using
constant step sizes.

4.2. Conditions for convergence of the relaxation
algorithm with an optimized step size

The following theorem shows that the relaxation algo-
rithm with the optimized step sizes converges under the
conditions of theorem 3.1.

Theorem 4.2. There exists a unique normalized Nash equi-
librium point to which the algorithm (15) converges if:

(1) X is a convex compact subset of Rm,

(2) the Nikaido–Isoda function Ψ :X×X → R is a weakly
convex-concave function and Ψ(x, x) = 0 for x ∈ X ,

(3) the optimum response function Z(x) is single-valued
and continuous on X ,

(4) the residual term rz(x, y) is uniformly continuous on X
with respect to z for all x, y ∈ X ,

(5) the residual terms satisfy

ry(x, y)− µx(y, x) > β
(
‖x− y‖

)
, x, y ∈ X , (18)

where β(0) = 0 and β is a strictly increasing function
(i.e., β(t2) > β(t1) if t2 > t1),

6. the relaxation parameters αs satisfy

αs = arg min
α∈[0,1)

{
max
y∈X

Ψ
(
xs+1(α), y

)}
. (19)

In fact, this theorem differs from theorem 3.1 only in con-
dition 6. However, this difference substantially changes the
convergence proof (compare [23]).

4.3. Proof of convergence of the algorithm with an
optimized step size

Existence of a normalized equilibrium point x∗ follows
from Kakutani’s theorem (see, for example, [2]). The con-
vergence proof relies on the nonnegativeness of a Lyapunov
function and is provided in an appendix.

In the next section we will consider some games in order
to gain an appreciation for how the above algorithms work
in conjunction with the Nikaido–Isoda function.

5. Application examples

5.1. A simple two player game with identical payoff
functions

Consider a two player game where both players are
maximizers, the action space for each player is R, and
the payoff functions of players 1 and 2 are identical.
Players have the following payoff function on the region
X = {(x1,x2): −10 6 x1,x2 6 10}:

φi(x) = − (x1 + x2)2

4
− (x1 − x2)2

9
. (20)

The Nikaido–Isoda function in this case is

Ψ(x, y) = 2

{
(x1 + x2)2

4
+

(x1 − x2)2

9

}
−
{

(y1 + x2)2

4
+

(y1 − x2)2

9

}
−
{

(x1 + y2)2

4
+

(x1 − y2)2

9

}
. (21)

All conditions of the convergence of theorems 3.1
and 4.2 are satisfied. Condition 5 follows from the strict
positive-definiteness of the matrixQ(x, x) = Ψxx(x, y)|y=x−
Ψyy(x, y)|y=x. The Nash equilibrium for this game is
x = (0, 0).

The optimum response function is calculated to be
Z(x) = − 5

13 (x2,x1). In this case, it is also relatively simple
to see how to optimize αs; since both players have the same
payoff function, the optimal αs is the one which optimizes
the payoff function

φi
(
xs+1

)
= φi

(
αsxs + (1− αs)Z

(
xs
))

, 0 < αs 6 1. (22)

Calculations of our MATLAB program with starting guess
x = (10, 5), and optimized step sizes αs are given in table 1.

We can now make a comparison between the optimized
and nonoptimized αs, see figure 1. The first graph, with
the optimization performed, shows a much quicker conver-
gence. In contrast, the second one, which has αs ≡ 0.5,
shows a smoother but much slower convergence. The third
shows step sizes of αs ≡ 1 (that is, a non-relaxed algo-
rithm). We would clearly prefer to use optimized step sizes
if this could be achieved easily.

Table 1
Convergence of the example in section 5.1.

Iteration(s) xs αs

0 (10, 5) 0.7309
1 (1.2849,−1.4668) 1.0000
2 (0.5639,−0.4942) 1.0000
3 (0.1901,−0.2169) 1.0000
4 (0.0834,−0.0731) 1.0000
5 (0.0281,−0.0321) 1.0000
6 (0.0123,−0.0108) 0.5001
7 (0.0082,−0.0078)
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(a)

(b)

(c)

Figure 1. Convergence of the example in section 5.1 with starting guess
(10, 5) using (a) optimized αs, (b) α ≡ 0.5 and (c) α ≡ 1. The isolines

are those of the identical payoff function.

5.2. The quantity setting duopoly

In this model, the players’ payoff functions are not nec-
essarily the same. Consider a situation where two firms
sell an identical product on the same market [9]. Each firm
will want to choose its production rates in such a way as
to maximize its respective profits. Let xi be the production
of firm i and let d,λ and ρ be constants. The market price
is

p(x) = d− ρ(x1 + x2) (23)

and the profit made by firm i is

φi(x) = p(x)xi − λxi =
[
d− λ− ρ(x1 + x2)

]
xi.

The Nikaido–Isoda function in this case is

Ψ(x, y) =
[
d− λ− ρ(y1 + x2)

]
y1

−
[
d− λ− ρ(x1 + x2)

]
x1

+
[
d− λ− ρ(x1 + y2)

]
y2

−
[
d− λ− ρ(x1 + x2)

]
x2, (24)

leading to an optimum response function of

Z(x) =
d− λ

2ρ
(1, 1)− 1

2
(x2,x1). (25)

All convergence conditions of theorems 3.1 and 4.2 are
satisfied. For positive ρ, condition 5 of these theorems
follows from the strict positive-definiteness of the matrix

Q(x, x) = Ψxx(x, y)|y=x −Ψyy(x, y)|y=x = 2ρ

(
2 1

1 2

)
.

It is a classical result that the Nash equilibrium in this
game is

xNi =
d− λ

3ρ

with corresponding payoff

φi
(
xNi
)

=
(d− λ)2

9ρ

(see, for example [9]). To show the convergence of the
algorithm in this case, let us assign values to the parameters.
Let d = 20, λ = 4 and ρ = 1, then xN = ( 16

3 , 16
3 ).

The convergence of the algorithm for the quantity setting
duopoly is displayed in figure 2. Note that in the left hand
panel αs ≡ 0.5. The right hand panel shows the optimized
algorithm convergence. As in the previous example, the
optimized step size requires fewer iterations to converge.

5.3. River Basin Pollution game

We will now use the relaxation algorithm to solve a
game with coupled constraints. These constraints mean
that the players’ action set is now a general convex set
X ⊂ Rn rather than as previously X = X1 × · · · ×Xn ⊆
Rm1 × · · · × Rmn , each separate Xi being convex.

5.3.1. Formulation of the River Basin Pollution game
In this game [6], we consider three players j = 1, 2, 3

located along a river. Each agent is engaged in an economic
activity (paper pulp producing, say) at a chosen level xj ,
but the players must meet environmental conditions set by
a local authority.

Pollutants may be expelled into the river, where they dis-
perse. Two monitoring stations ` = 1, 2 are located along
the river, at which the local authority has set maximum
pollutant concentration levels.
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Figure 2. Convergence of the example in section 5.2.

Table 2
Constants for the River Basin Pollution game.

Player j c1j c2j ej uj1 uj2

1 0.10 0.01 0.50 6.5 4.583
2 0.12 0.05 0.25 5.0 6.250
3 0.15 0.01 0.75 5.5 3.750

The revenue for player j is

Rj (x) =
[
d1 − d2(x1 + x2 + x3)

]
xj (26)

with expenditure

Fj(x) = (c1j + c2jxj )xj . (27)

Thus the net profit for player j is

φj(x) =Rj(x)−Fj(x)

=
[
d1 − d2(x1 + x2 + x3)− c1j − c2jxj

]
xj . (28)

The constraint on emission that is imposed by the local
authority at location ` is

q`(x) =
3∑
j=1

uj`ejxj 6 K`, ` = 1, 2. (29)

The economic constants d1 and d2 determine the inverse
demand law and are set to 3.0 and 0.01, respectively. The
values for constants c1j and c2j are given in table 2, and
K` = 100, ` = 1, 2.

The uj` are the decay and transportation coefficients
from player j to location `, and ej is the emission co-
efficient of player j, also given in table 2.

5.3.2. Solution to the River Basin Pollution game
The above game, in which agents maximize profits (28)

subject to actions satisfying jointly convex constraints (29),
is a coupled constraint game. We will use the relaxation
algorithm to compute an equilibrium to this game in the
sense of definition 2.1. This algorithm computes a normal-
ized equilibrium point (in Aubin’s sense, see definition 2.3),

which is one of the many Nash equilibria that solve this
game.9

The Nikaido–Isoda function in this case is

Ψ(x, y) =
3∑
j=1

(
φj(yi|x)− φj(x)

)
=
[
d1 − d2(y1 + x2 + x3)− c11 − c21y1

]
y1

+
[
d1 − d2(x1 + y2 + x3)− c12 − c22y2

]
y2

+
[
d1 − d2(x1 + x2 + y3)− c13 − c23y3

]
y3.

Notice that the region defined by equation (29) is convex.
Condition 5 of theorem 3.1 follows from the strict positive-
definiteness of the matrix Q(x, x):

Q(x, x) = Ψxx(x, y)|y=x −Ψyy(x, y)|y=x

=

4c21 + 4d2 2d2 2d2

2d2 4c22 + 4d2 2d2

2d2 2d2 4c23 + 4d2



= 2d2

1 1 1

1 1 1

1 1 1



+ 2

2c21 + d2 0 0

0 2c22 + d2 0

0 0 2c23 + d2

 .

9 As known, the equilibrium with coupled constraints can be a multiple
equilibrium and depends on how the burden of satisfying the constraints
is to be distributed among the players. Once such a distribution is fixed,
we can identify an equilibrium corresponding to that distribution. In
fact, for diagonally strictly concave games, there is a one-to-one cor-
respondence between the “burden” and the equilibrium. Our game is
diagonally strictly concave, however, exploiting this feature here is be-
yond the scope of this paper. For a formal definition of Rosen’s coupled
constraint equilibrium and explanations see [19]. In our numerical ex-
periments, we assume that the players share the hardship of satisfying
the constraints evenly (or “in solidarity”, i.e., the burden of satisfying
the constraints satisfaction is distributed equally among all the players,
see [4]).
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Table 3
Convergence in the River Basin Pollution game for α ≡ 0.5.

Iteration(s) xs1 xs2 xs3 αs

0 0 0 0 0.5
1 9.68 8.59 1.90 0.5
2 14.85 12.62 2.655 0.5
3 17.65 14.49 2.913 0.5
4 19.18 15.35 2.961 0.5
5 20.03 15.73 2.934 0.5
...

...
...

...
...

10 21.07 16.03 2.762 0.5
...

...
...

...
...

20 21.14 16.03 2.728 0.5

Table 4
Convergence in the River Basin Pollution game using the

optimized step size.

Iteration(s) xs1 xs2 xs3 α∗s

0 0 0 0 0.5
1 19.35 17.19 3.79 1
2 20.71 16.11 3.043 1
3 20.88 16.07 2.924 0.5
4 21.08 16.03 2.776 1
5 21.10 15.03 2.757 0.5
...

...
...

...
...

10 21.14 16.03 2.73 0.4627
...

...
...

...
...

20 21.14 16.03 2.729 0.7534

Figure 3. Convergence in section 5.3 with starting guess (0, 0, 0), α ≡ 0.5.

The matrix Q(x, x) was calculated using the analytical capa-
bilities of the package MATHEMATICA. Other convergence
conditions of theorems 3.1 and 4.2 also are satisfied.

We used a starting guess of x = (0, 0, 0) in our MATLAB

program. The convergence for α ≡ 0.5 is shown in table 3.
The calculations for the algorithm with optimized step sizes
are given in table 4.

The convergence with α ≡ 0.5 is displayed as a line
in the 3D action space in figure 3. This game was also
solved in [6] using Rosen’s algorithm and was found
to have equilibrium x = (21.149, 16.028, 2.722), giv-

(a)

(b)

(c)

Figure 4. Progression of payoffs of figure 3.

ing net profits z = (48.42, 26.92, 6.60). The first con-
straint is active, i.e., q1(x) = K1 = 100; the second
constraint is inactive (q2(x) = 81.17). Our solution of
x = (21.14, 16.03, 2.728) is within ±0.01 of the solution
achieved in [6] using Rosen’s gradient projection algo-
rithm [19].

5.3.3. Applying the Pigouvian taxes
Now that the Nash normalized equilibrium has been

found, we can compel the players to obey it by applying
Pigouvian taxes. In this way we create a new, unconstrained
game.
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For each constraint, we place a tax on each player to the
amount of

T`(x) = λ` max(0, q`(x)−K`), (30)

where λ`, ` = 1, 2, is a penalty coefficient for violating
the `th constraint. Since T`(x) is a nonsmooth penalty
function, there will always exist coefficients λ` sufficiently
large to ensure that agents adhere to the environmental con-
straints (29). In other words, for “big” λ`, the waste pro-
duced by agents’ optimal solutions will satisfy the environ-
mental standards.

Applying the taxes as above leads us to the modified
payoff functions φ∗j ,

φ∗j (x) = Rj(x)− Fj(x)−
∑
`

T`(x).

The new equilibrium problem with payoff functions φ∗j and
uncoupled constraints has the Nash equilibrium point x∗∗

defined by the equation

φ∗j
(
x∗∗
)

= max
xj>0

φ∗j
(
xj |x∗∗

)
, j = 1, . . . ,n. (31)

We make a conjecture based on the general theory of non-
smooth optimization (see, for example, [20]) that, for the
environmental constraints’ satisfaction, the penalty coeffi-
cients λ` should be greater than (or equal to) the Lagrange
multipliers corresponding to the constraints (29). How-
ever, the new (unconstrained) Nash equilibrium x∗∗ may
not equal the old (constrained) Nash normalized equilib-
rium x∗. In our numerical experiments we set λ` to equal
the “final” Lagrange multipliers10 for constraint ` that was
observed during the calculation of the constrained equilib-
rium by algorithm (15). For this setup, the unconstrained
equilibrium x∗∗ is equal to the constrained equilibrium x∗,
see figure 5.

For our game, only the first constraint ` = 1 was active.
Thus, in the River Basin Pollution game (with the parameter
values given in table 2), the payoff function for player j
becomes

φ∗j (x) =Rj(x)− Fj (x)− T1(x)

=
[
d1 − d2(x1 + x2 + x3)− c1j − c2jxj

]
xj

− λ1 max

(
0,

3∑
j=1

uj1ejxj −K1

)
. (32)

The computations of section 5.3.2 gave us the maxi-
mum Lagrange multiplier value for the active constraint
λ1 = 0.5774. Cross-sectional graphs (see figure 5) of the
modified payoff functions illustrate that each payoff func-
tion achieves its maximum at the point x∗.

10 We were using a nonlinear programming subroutine (MATLAB

constr) to maximize the Nikaido–Isoda function and the Lagrange
multipliers were available at each iteration of the algorithm (15).

(a)

(b)

(c)

Figure 5. Payoff functions for players 1, 2, 3 with Pigouvian taxes applied.

6. Conclusions

The Nikaido–Isoda function was introduced to find a
Nash equilibrium using optimization approaches. This, to-
gether with the relaxation methodology, allows us to find
the Nash equilibrium of quite general infinite games (non-
zero sum, multi-player, and coupled constraints) in a much
simpler fashion than had been previously possible. Soft-
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ware was developed to implement these ideas and has been
successfully used to solve some examples.

The use of the algorithm with an optimized step size
resulted in a much smaller number of iterations needed
for convergence. However, the computation time of one
iteration depends on the effectiveness of the minimiza-
tion method. In a few cases, the method11 was ineffi-
cient, in that the overall computation times were compa-
rable with the relaxation algorithm with the constant step
size.

The numerical experiments showed that the relaxation
algorithm is an efficient computational tool to solve Nash
equilibrium problems under quite general conditions.

Appendix

Proof of convergence of the algorithm with an optimized
step size

We need to establish existence and uniqueness of a nor-
malized equilibrium point.

Existence of a normalized equilibrium point x∗ follows
from Kakutani’s theorem (see, for example, [2]).

Let us denote by G(x) = ∂yΨ(x, y)|y=x the differential
of the function Ψ(x, y) [21] with respect to the second argu-
ment at point (x, x). The following inequality was proved
in [21]:

〈g(x)− g(y), y− x〉 > ry(x, y)− µx(y, x),

where

x, y ∈ X , g(x) ∈ G(x), g(y) ∈ G(y).

Condition 5 of theorem 4.2 implies strict anti-monotonicity12

of the gradient multivalued map G(x) and, consequently,
uniqueness of the normalized equilibrium point x∗. The
normalized equilibrium point is also a Nash equilibrium
point (see lemma 2.4).

To prove convergence of the algorithm we use the fol-
lowing Lyapunov function:

V (x) = Ψ(x,Z(x)).

The idea of the proof relies on the contradiction between
the nonnegativeness of the Lyapunov function and the fact
that if there were no convergence to an equilibrium, V (x)
would have to be negative. The function V (x) equals zero
at the normalized equilibrium point x∗,

V (x∗) = 0,

and

V (x∗) > 0, x ∈ X , x 6= x∗.

11 As said, the MATLAB constr function was used to optimize α.
12 The multivalued map G(y) is called strictly anti-monotone if

〈g(x) − g(y), y− x〉 > 0 for all x, y ∈ X,

g(x) ∈ G(x), g(y) ∈ G(y),

see, for instance, [21].

With condition 6 of the theorem, we can prove that the
Lyapunov function V (xs) cannot increase on the trajectory
generated by the algorithm:

V
(
xs+1

)
= Ψ

(
xs+1,Z

(
xs+1

))
= Ψ

((
1− αs

)
xs + αsZ

(
xs
)
,Z
(
xs+1

))
= min

06α61

(
Ψ
(
(1− α)xs + αZ

(
xs
)
,Z
(
(1− α)xs

+ αZ
(
xs
)))

6 Ψ
(
xs,Z

(
xs
))

= V
(
xs
)
. (33)

Let us denote by xs+1(α) the trajectory point which de-
pends upon a free parameter α at iteration s, i.e.,

xs+1(α) = (1− α)xs + αZ
(
xs
)
.

Evidently, xs+1 = xs+1(αs), where step size αs is obtained
by optimization rule (19).

Weak convexity of the function Ψ(x, y) with respect to
x implies

V
(
xs+1

)
= Ψ

(
xs+1,Z

(
xs+1

))
= Ψ

(
(1− αs)xs + αsZ

(
xs
)
,Z
(
xs+1

(
αs
)))

6Ψ
(
(1− α)xs + αZ

(
xs
)
,Z
(
xs+1(α)

))
6 (1− α)Ψ

(
xs,Z

(
xs+1(α)

))
+ αΨ

(
Z
(
xs
)
,Z
(
xs+1(α)

))
− (1− α)αrZ(xs+1(α))

(
xs,Z

(
xs
))

,

where 0 6 α 6 1. Since

Ψ
(
xs,Z

(
xs+1(α)

))
6 Ψ

(
xs,Z

(
xs
))

and

Ψ
(
xs, xs

)
= 0,

then

V
(
xs+1

)
6 (1− α)Ψ

(
xs,Z

(
xs
))

+ αΨ
(
xs, xs

)
+ αΨ

(
Z
(
xs
)
,Z
(
xs+1(α)

))
− (1− α)αrZ(xs+1 (α))

(
xs,Z

(
xs
))
. (34)

Weak concavity of the function Ψ(x, y) with respect to the
variable y implies

(1− α)Ψ
(
xs,Z

(
xs
))

+ αΨ
(
xs, xs

)
6 Ψ

(
xs, (1− α)Z

(
xs
)

+ αxs
)

+ (1− α)αµxs
(
Z
(
xs
)
, xs
)

6 V
(
xs
)

+ (1− α)αµxs
(
Z
(
xs
)
, xs
)
. (35)

Combining (34) and (35) we have

V
(
xs+1

)
6 V

(
xs
)

+ (1− α)α
[
µxs(Z

(
xs
)
, xs
)

− rZ(xs+1(α))

(
xs,Z

(
xs
))]

+ αΨ
(
Z
(
xs
)
,Z
(
xs+1(α)

))
= V

(
xs
)

+ (1− α)α
[
µxs
(
Z
(
xs
)
, xs
)

− rZ(xs)
(
xs,Z

(
xs
))]
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+ (1− α)α
[
rZ(xs)

(
xs,Z

(
xs
))

− rZ(xs+1(α))

(
xs,Z

(
xs
))]

+ αΨ
(
Z
(
xs
)
,Z
(
xs+1(α)

))
. (36)

Further, in view of condition 5 of the theorem,

V
(
xs+1

)
6 V

(
xs
)
− (1− α)αβ

(∥∥xs − Z
(
xs
)∥∥)

+ (1− α)α
[
rZ(xs)

(
xs,Z

(
xs
))

− rZ(xs+1(α))

(
xs,Z

(
xs
))]

+ αΨ
(
Z
(
xs
)
,Z
(
xs+1(α)

))
. (37)

Suppose that the statement of the theorem is not valid.
In this case, there exists a subsequence xsk of the sequence
xs, and there exists ε > 0 such that∥∥xsk − Z

(
xsk
)∥∥ > ε > 0, k = 1, 2, . . . . (38)

The continuity of the function Z(x) (condition 3) implies∥∥Z(xsk+1(α)
)
− Z

(
xsk
)∥∥→ 0, as α→ 0, (39)

and, consequently, condition 2 implies

Ψ
(
Z
(
xsk
)
,Z
(
xsk+1(α)

))
→ 0, as α→ 0. (40)

Since the residual term rz(x, y) is uniformly continuous with
respect to z, then with limit equation (39)[
rZ(xsk )

(
xsk ,Z

(
xsk
))
− rZ(xsk+1(α))

(
xsk ,Z

(
xsk
))]
→ 0,

as α→ 0. (41)

If α is sufficiently small, then (40) and (41) imply[
rZ(xsk )

(
xsk ,Z

(
xsk
))
− rZ(xsk+1(α))

(
xsk ,Z

(
xsk
))]

+ (1− α)−1Ψ
(
Z
(
xsk
)
,Z
(
xsk+1(α)

))
6 2−1β(ε). (42)

Further, combining (37), (38), and (42), for sufficiently
small α, we have

V
(
xsk+1

)
6 V

(
xsk
)
− (1− α)αβ

(∥∥xs − Z
(
xs
)∥∥)

+ (1− α)α
[
rZ(xsk )

(
xsk ,Z

(
xsk
))

− rZ(xsk+1)

(
xsk ,Z

(
xsk
))

+ (1− α)−1Ψ
(
Z
(
xsk
)
,Z
(
xsk+1

))]
6 V

(
xsk
)
− (1− α)αβ(ε) + (1− α)α

[
2−1β(ε)

]
6 V

(
xsk
)
− 2−1(1− α)αβ(ε).

It follows from the last inequality that

V
(
xsk
)
→ −∞, as k →∞.

This contradicts nonnegativeness of the function V (xsk ),
which proves the theorem.
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