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Abstract

In binary classification, performance metrics that are defined as the probability that some
error exceeds a threshold are numerically difficult to optimize directly and also hide potentially
important information about the magnitude of errors larger than the threshold. Defining similar
metrics, instead, using Buffered Probability of Exceedance (bPOE) generates counterpart met-
rics that provide information about the magnitude of errors exceeding the threshold and, under
certain conditions on the error function, can be optimized directly via convex or linear program-
ming. We apply this approach to the case of AUC, the Area Under the ROC curve, and define
Buffered AUC (bAUC). We show that bAUC can provide insights into classifier performance
not revealed by AUC, while being closely related as a lower bound and representable as the
area under a modified ROC curve. Additionally, while AUC is numerically difficult to optimize
directly, we show that bAUC optimization often reduces to convex or linear programming. Ex-
tending these results, we show that AUC and bAUC are special cases of Generalized bAUC and
that popular Support Vector Machine (SVM) formulations for approximately maximizing AUC
are equivalent to direct maximization of Generalized bAUC. As a central component to these
results, we provide a novel formula for calculating bPOE, the inverse of Conditional Value-at-
Risk (CVaR). Using this formula, we show that particular bPOE minimization problems reduce
to convex and linear programming.

1 Introduction

In binary classification, some performance metrics can be defined as the probability that some
error function exceeds a particular threshold, i.e. by using Probability of Exceedance (POE) and
an error function. For example, if one uses misclassification error, Accuracy is one minus the
probability that misclassification error exceeds the threshold of zero. The Area Under the Receiver
Operating Characteristic Curve (AUC) is a popular performance metric in classification that can
also be viewed in this way, as the probability that ‘ranking’ error exceeds a threshold of zero. With
a long history in signal detection theory (Egan (1975), Swets et al. (2000)), diagnostic systems
analysis (Swets (1988)), and medical decision making (Zou (2002)), AUC has found much success
as a measure of a model’s ability to differentiate different classes of events. In machine learning,
AUC has gained popularity due to its advantages over Accuracy, particularly when one has no
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knowledge of misclassification costs or must deal with imbalanced classes (Bradley (1997), Provost
et al. (1998, 1997), Ling et al. (2003), Cortes and Mohri (2004)). In both of these cases, AUC
has benefits over Accuracy, with Accuracy implying equal misclassification costs and heightened
emphasis on correctly classifying the majority class.

Defining metrics by using POE, although intuitive, produces metrics with undesirable prop-
erties. First, these metrics only consider the number of errors larger than the threshold and do
not consider the magnitude of these errors which exceed the threshold. This information, which
can sometimes be viewed as the classifier’s ‘confidence,’ may be important when gauging classifier
performance. Additionally, there is evidence that consideration of this information can lead to
improved generalization, guaranteeing a classification margin when optimally considered (Vapnik
and Vapnik (1998)). Second, these metrics are difficult to optimize directly. When dealing with
empirical observations of data, direct optimization of these metrics yields a non-convex and discon-
tinuous optimization problem. For example, with Accuracy it is common to utilize some convex
surrogate to the 0 − 1 loss to attempt to optimize Accuracy (e.g., the hinge or exponential loss).
With AUC defined with POE, these issues are directly applicable.

Instead of defining metrics with POE, we take the approach of defining metrics with Buffered
Probability of Exceedance (bPOE). Focusing our in-depth analysis on the case of AUC, we show
that this approach produces a metric that accounts for the magnitude of errors, with direct opti-
mization of the metric reducing to convex, sometimes linear, programming. Recently introduced as
a generalization of Buffered Probability of Failure, a concept introduced by Rockafellar (2009) and
explored further in Mafusalov and Uryasev (2015) and Davis and Uryasev (2015), bPOE equals
one minus the inverse of the superquantile. The superquantile is also commonly known as the
Conditional Value-at-Risk (CVaR) from the financial engineering literature. To facilitate our re-
sults, we first introduce a novel formula for simultaneously calculating bPOE and the quantile.
We then show that this formula reduces many bPOE optimization problems to convex and linear
programming.

Furthermore, we apply bPOE to the case of AUC to create a new, AUC-like counterpart metric
called Buffered AUC (bAUC). This new metric is indeed a counterpart to AUC. It is a lower
bound of AUC. Like AUC, it measures a classifiers ability to discriminate instances belonging
to positive and negative classes. It can also be represented as the area under a modified ROC
curve, which we call the bROC curve. This new metric is also an informative counterpart that
does not simply move linearly with AUC. It can reveal information about classifier performance
that may be hidden by AUC, particularly when the magnitude of ranking errors is an important
discriminatory characteristic. In addition, the bROC curve can serve as an informative supplement
to the information provided by the bAUC summary metric. We show on real data sets that the two
measures may disagree on which classifier is superior. We also show that in the case of classifiers
yielding similar AUC and ROC curves, important discriminatory information can be revealed by
bAUC and the bROC curves.

With AUC defined with POE, it is extremely difficult to optimize directly, yielding a non-convex
and discontinuous objective function when faced with discrete observations. We show that bAUC
has substantial benefits in this regard, with direct optimization reducing to convex and linear
programming. We then introduce Generalized bAUC, a natural extension of bAUC, and show
that this produces a family of metrics, in which AUC and bAUC belong, all having interpretations
as areas under modified ROC curves. We then provide a formulation for optimizing Generalized
bAUC and show that the popular AUC maximizing RankSVM of Herbrich et al. (1999), Brefeld
and Scheffer (2005) is a special case of maximizing Generalized bAUC. Thus, we show that bAUC
has already found its way into the AUC maximization literature, albeit not explicitly, as an easily
optimizable metric alternative to AUC that leads to a classification margin. Additionally, this
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allows us to reinterpret the RankSVM, showing that the tradeoff parameter is related to bPOE
threshold and that the optimal objective value is, in fact, equal to one minus Generalized bAUC.

As evidence for the viability of a more general scheme, in which one can apply bPOE to create
a counterpart for POE defined metrics, we briefly address the case of Accuracy. We show that the
result of Norton et al. (2015) can be interpreted in the following way: The classical soft-margin
SVM formulation of Cortes and Vapnik (1995) is a special case of direct maximization of a bPOE
counterpart to Accuracy called Buffered Accuracy. This serves to show that the idea of applying
bPOE to define informative metric counterparts that are easy to optimize has already been applied
to Accuracy, once again not explicitly, yielding the soft-margin SVM formulation.

The remainder of this paper is organized in the following manner. Section 2 reviews the AUC
performance metric and issues associated with AUC, including difficulties with direct maximization.
Section 3 reviews superquantiles and bPOE. We then introduce a calculation formula for bPOE
and show that under particular circumstances, minimization of bPOE can be reduced to convex,
sometimes linear, programming. Section 4 uses the bPOE concept to introduce bAUC. We discuss
its value as a natural counterpart to AUC as a classifier performance metric and show that bAUC
is easy to optimize. We then show that it can be presented as the area under a modified ROC
curve and demonstrate experimentally its value as an AUC counterpart with an accompanying case
study demonstrating available software implementations for efficient calculation and optimization.
Section 5 generalizes the bAUC definition, presents it as a family of modified ROC curves with
corresponding areas under these curves, and presents a formulation for maximizing this quantity.
We then discuss its relation to existing SVM-based AUC maximization formulations. Section 6
discusses application of bPOE to define Buffered Accuracy and discusses its relation to SVM’s.

2 The AUC Performance Metric

In this paper, we consider the binary classification task where we have random vectors X+, X−

in Rn that belong, respectively, to classes (Y = +1) and (Y = −1). We are given N samples
X1, ..., XN of the random vector X = X+∪X−, of which m+ have positive label, m− have negative
label, and we must choose a scoring function h : Rn → R and decision threshold t ∈ R to create a
classifier with decision rule

Yi =

{
+1 if h(Xi) > t

−1 if h(Xi) ≤ t .

2.1 Defining AUC: Two Perspectives

AUC is a popular performance metric that measures the ability of a scoring function, h, to dif-
ferentiate between two randomly selected instances from opposite classes. As opposed to a metric
such as Accuracy, which considers the threshold t, AUC does not and is a measure of separation
between score distributions h(X+) and h(X−). In other words, while accuracy is a direct measure
of a classifiers ability to properly classify a single randomly chosen sample, AUC is concerned with
a classifiers ability to properly rank two randomly selected samples that are presumed to be in
different classes. This is a beneficial measure when classes are imbalanced or misclassification costs
are unknown.(Bradley (1997), Provost et al. (1998, 1997), Ling et al. (2003), Cortes and Mohri
(2004))

The AUC metric is defined as the Area Under the Receiver Operating Characteristic Curve
(the ROC curve). Figure 1 shows an example ROC curve1, which plots the True Positive Rate,

1In this paper, our examples are Empirical ROC curves, where we have a fixed h and samples of the random
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Figure 1: An example of an Empirical ROC curve for fixed h and data set consisting of samples of X. We plot the
Empirical True Positive Rate, P (h(X+) > t), on the vertical axis and the Empirical False Positive Rate, P (h(X−) >
t), on the horizontal axis for all values of decision threshold t ∈ R.

P (h(X+) > t), on the vertical axis and the False Positive Rate, P (h(X−) > t), on the horizontal
axis for different values of t. The AUC is the area under the curve formed by plotting pairs
(P (h(X−) > t), P (h(X+) > t)) for all thresholds t ∈ R. Specifically, we can write this in integral
form. If we let P (h(X) > t) = 1− Fh(X)(t) be one minus the cumulative density function of h(X),
AUC for a scoring function h can be written as (1).

AUC(h) =

∫
t
P (h(X+) > t) dP (h(X−) > t) (1)

In this paper, we focus more-so on an equivalent probabilistic definition of AUC provided by
Hanley and McNeil (1982). Hanley and McNiel showed that the area under the ROC curve is equal
to the probability that a randomly selected positive sample will be scored higher than a randomly
selected negative sample. Specifically, they show that

AUC(h) = P
(
h(X+) > h(X−)

)
. (2)

With this paper focusing on POE and bPOE, we write AUC as one minus the probability of
‘ranking error’ ξ(h) = − (h(X+)− h(X−)) exceeding zero. Specifically,

AUC(h) = 1− P (ξ(h) ≥ 0).

Additionally, since the true distribution of X+ and X− are rarely known, we often work with sam-

plesX+
1 , ..., X

+
m+ , X−1 , ..., X

−
m− . In this case, denote our ranking errors as ξij(h) = −

(
h(X+

i )− h(X−j )
)

and let Iλ denote an indicator function where,

Iλ =

{
1, if λ is True,

0, if λ is False.

variables X+, X−.
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We then have that AUC is approximated as,

AUC(h) =
1

m+m−

m+∑
i=1

m−∑
j=1

Ih(X+
i )>h(X−

j )

= 1− 1

m+m−

m+∑
i=1

m−∑
j=1

Iξij(h)≥0

Furthermore, the ROC curve is estimated by plotting the True Positive Rate and False Positive Rate
for thresholds t ∈ S = {h(X+

1 ), ..., h(X+
m+), h(X−1 ), ..., h(X−

m−)} on the ROC plot and connecting
these points by some means to make an ROC curve (e.g. throughout the paper, we simply use
linear interpolation to connect these points in our ROC plots).

For a more thorough introduction to AUC and the use of the ROC curve, we refer readers to
Fawcett (2006). Additionally, for a broader view of AUC and its relation to other performance
metrics, we refer readers to Hernández-Orallo et al. (2012).

2.2 Properties of AUC

As a performance metric, AUC provides insight into the ranking quality of a classifier by considering
pairwise differences of scores given to samples from opposing classes. With each sample data point
receiving a score, h(Xi), the ordering of these scores (i.e. the ‘ranking’ induced by the scoring
function) can be an important indicator of classifier performance (see e.g. Caruana et al. (1996),
Schapire and Singer (1998), Cortes and Mohri (2004), Herbrich et al. (1999)). Specifically, AUC
considers the distribution of ranking errors ξij(h), where a pair of samples X+

i , X−j are properly
ranked by h if ξij(h) < 0, and equals the proportion of ranking errors ξij < 0. AUC, though,
does not consider the magnitude of ranking errors, i.e. the confidence with which the classifier
correctly or incorrectly ranks pairs of samples. Therefore, if the magnitude of ranking errors is
an important performance indicator, AUC may not be a desirable performance measure. This
characteristic parallels that of Value-at-Risk (VaR) in Financial Engineering. It hides potentially
important information about tail behavior by failing to consider the magnitude of tail losses.

Maximizing AUC is also a challenging task, as it is akin to probability minimization for discrete
distributions, an optimization task which yields a discontinuous and non-convex objective function.
Many AUC optimization approaches exist (see e.g. Brefeld and Scheffer (2005), Miura et al. (2010),
Krm et al. (2012), Cortes and Mohri (2004), Herschtal and Raskutti (2004), Mozer (2003)). These
approaches, though, utilize approximations of the AUC objective and do not optimize AUC directly.
For example, Miura et al. (2010) optimizes an AUC approximation by replacing the indicator loss
with a continuous sigmoid function. This yields a continuous optimization problem, though still
non-convex.

3 bPOE and bPOE Optimization

With AUC defined using POE, we explore the use of a counterpart to POE called bPOE. Specifi-
cally, a generalization of Buffered Probability of Failure (Rockafellar and Royset (2010)), bPOE is
the inverse of the superquantile (CVaR) defined in Rockafellar and Uryasev (2000). In this section,
after reviewing these concepts, we present a novel formula for bPOE that simultaneously calcu-
lates POE. We show that this formula allows certain bPOE minimization problems to be reduced
to convex, sometimes linear, programming. This result is particularly important when we apply
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bPOE to create bAUC in Section 4.

3.1 bPOE and Tail Probabilities

When working with optimization of tail probabilities, one frequently works with constraints or
objectives involving probability of exceedance (POE), pz(X) = P (X > z), or its associated quantile
qα(X) = min{z|P (X ≤ z) ≥ α}, where α ∈ [0, 1] is a probability level. The quantile is a popular
measure of tail probabilities in financial engineering, called within this field Value-at-Risk by its
interpretation as a measure of tail risk. The quantile, though, when included in optimization
problems via constraints or objectives, is quite difficult to treat with continuous (linear or non-
linear) optimization techniques.

A significant advancement was made in Rockafellar and Uryasev (2000) in the development of
an approach to overcome the difficulties raised by the use of the quantile function in optimization.
They explored a replacement for the quantile, called CVaR within the financial literature, and
called the superquantile in a general context. The superquantile is a measure of uncertainty similar
to the quantile, but with superior mathematical properties. Formally, the superquantile (CVaR)
for a continuously distributed X is defined as

q̄α(X) = E [X|X > qα(X)] .

For general distributions, the superquantile can be defined by the following formula,

q̄α(X) = min
γ
γ +

E[X − γ]+

1− α
, (3)

where [·]+ = max{·, 0}.
Similar to qα(X), the superquantile can be used to assess the tail of the distribution. The

superquantile, though, is far easier to handle in optimization contexts. It also has the important
property that it considers the magnitude of events within the tail. Therefore, in situations where
a distribution may have a heavy tail, the superquantile accounts for magnitudes of low-probability
large-loss tail events while the quantile does not account for this information.

Working to extend this concept, bPOE was developed as the inverse of the superquantile in the
same way that POE is the inverse of the quantile. Specifically, bPOE is defined in the following
way, where supX denotes the essential supremum of random variable X.

Definition 1 (Mafusalov and Uryasev (2015)). bPOE of random variable X at threshold z equals

p̄z(X) =

{
max{1− α|q̄α(X) ≥ z}, if z ≤ supX ,

0, otherwise.

In words, bPOE calculates one minus the probability level at which the superquantile equals
the threshold. Roughly speaking, bPOE calculates the proportion of worst case outcomes which
average to z. We note that there exist two slightly different variants of bPOE, called Upper and
Lower bPOE. For this paper, we utilize Upper bPOE. For the interested reader, details regarding
the difference between Upper and Lower bPOE are contained in the appendix.

3.2 Calculation of bPOE

Using Definition 1, bPOE would seem troublesome to calculate. In Proposition 1, we introduce
a new calculation formula for bPOE. We view this new formula as a critical step in development

6



of the bPOE concept, as it allows some bPOE minimization problems to be reduced to convex
and linear programming. Additionally, calculating bPOE at threshold z with this formula allows
simultaneous calculation of the quantile at probability level one minus bPOE.

Proposition 1. Given a real valued random variable X and a fixed threshold z, bPOE for random
variable X at z equals

p̄z(X) = inf
γ<z

E[X − γ]+

z − γ
=



lim
γ→−∞

E[X−γ]+

z−γ = 1 , if z ≤ E[X] ,

min
γ<z

E[X−γ]+

z−γ , if E[X] < z < supX ,

lim
γ→z−

E[X−γ]+

z−γ = P (X = supX) , if z = supX ,

min
γ<z

E[X−γ]+

z−γ = 0 , if supX < z.

(4)

Furthermore, if z ∈ (E[X], supX) then γ∗ = q1−p̄z(X) ∈ argmin
γ<z

E[X−γ]+

z−γ .

Proof. We prove four cases. Note that case 1 and 3 coincide for constant random variable X, when
z = supX.

Case 1: z ≤ E[X].
Assume z ≤ E[X]. First, note that p̄z(X) = max{1 − α|q̄α(X) ≥ z} = 1. This follows from the
fact that q̄0(X) = E[X]. Then, notice that

inf
γ<z

E[X − γ]+

z − γ
= inf

0<z−γ
E[

X

z − γ
− γ

z − γ
]+ . (5)

Letting a = 1
z−γ , we get

inf
0<z−γ

E[
X

z − γ
− γ

z − γ
]+ = inf

a>0
E[aX + a(

1

a
− z)]+ = inf

a>0
E[a(X − z) + 1]+ . (6)

Now, 0 ≤ E[X]−z =⇒ for every a > 0, E[a(X−z)+1]+ ≥ E[a(X−z)+1] ≥ a(E[X]−z)+1 ≥ 1.
This implies that,

0 ∈ argmin
a≥0

E[a(X − z) + 1]+ .

Then, notice that since 0 ∈ argmin
a≥0

E[a(X−z)+1]+ and that for every a > 0, E[a(X−z)+1]+ ≥ 1

we have that

inf
a>0

E[a(X − z) + 1]+ = min
a≥0

E[a(X − z) + 1]+ = E[0(X − z) + 1]+ = 1 .

Finally, noting that if a = 1
z−γ then lim(z−γ)→∞

1
z−γ = 0 = a and

inf
0<z−γ

E[X − γ]+

z − γ
= min

a≥0
E[a(X − z) + 1]+ = E[0(X − z) + 1]+

= lim
(z−γ)→∞

E[X − γ]+

z − γ
= 1 .
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Case 2: E[X] < z < supX.
Assume that E[X] < z < supX. This assumption and Definition 2 imply that

p̄z(X) = max{1− α|q̄α(X) ≥ z} = min{1− α|q̄α(X) ≤ z} . (7)

Recall the formula for the superquantile given in Rockafellar and Uryasev (2000),

q̄α(X) = min
γ

[
γ +

E[X − γ]+

1− α

]
= min

γ
g(X,α, γ) . (8)

Note also Rockafellar and Uryasev (2000) states that if γ∗ = argmin
γ

g(X,α, γ), then

q̄α(X) = γ∗ + E[X−γ∗]+

1−α and γ∗ = qα(X).
Next, using (7) and (8) we get

p̄z(X) = min{1− α : min
γ
g(X,α, γ) ≤ z} . (9)

Then, considering (8) we can write (9) as,

p̄z(X) =min
α,γ

1− α

s.t. γ +
E[X − γ]+

1− α
≤ z .

(10)

Let (γ∗, α∗) denote an optimal solution vector to (10). Since z < supX, the formula (8) implies
that

γ∗ = qα∗(X) < q̄α∗(X) = z .

This implies that γ∗ < z. Explicitly enforcing the constraint γ < z allows us to rearrange (10)
without changing the optimal solution or objective value,

p̄z(X) = min
α,γ<z

1− α

s.t. 1− α ≥ E[X − γ]+

z − γ
.

(11)

Simplifying further, this becomes

p̄z(X) =min
γ<z

E[X − γ]+

z − γ
. (12)

Case 3: z = supX.
Assume z = supX. First, note that p̄z(X) = max{1−α|q̄α(X) ≥ z} = P (X = supX). This follows
from the fact that q̄(1−P (X=supX))(X) = supX. Next, recall that with (5) and (6) for a = 1

z−γ , we
get

inf
γ<z

E[X − γ]+

z − γ
= inf

a>0
E[a(X − z) + 1]+ .

Since supX − z = 0, we have

inf
a>0

E[a(X − z) + 1]+ = lim
a→∞

E[a(X − z) + 1]+ = P (X = supX) .
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To see this, notice that for any realization X0 of X, where X0−z < − 1
a , we get [a(X0−z)+1]+ = 0.

Furthermore, for any realization X1 of X where X1 = supX = z we have that [a(X1 − z) + 1]+ =
[0 + 1]+ = 1. Thus,

lim
a→∞

E[a(X − z) + 1]+ = 0 ∗
(

lim
a→∞

P (X − z < −1

a
)

)
+ 1 ∗ P (X = supX) = P (X = supX) .

Case 4: z > supX.
Assume that z > supX. First, note that p̄z(X) = 0. This follows immediately from Definition 2
(i.e. the ‘otherwise’ case). Next, recall again that with (5) and (6) for a = 1

z−γ , we get

inf
γ<z

E[X − γ]+

z − γ
= inf

a>0
E[a(X − z) + 1]+ .

Since supX− z < 0, then for any 0 < a ≤ z− supX we have that P (X−za ≤ −1) = 1 implying that
E[X−za + 1]+ = 0. This gives us that

inf
a>0

E[a(X − z) + 1]+ = min
a>0

E[a(X − z) + 1]+ = 0 .

Thus, via Proposition 1 we have provided a surprisingly simple formula for calculating bPOE
that is extremely similar to formula (3). In the following section, we show that the true power of
formula (4) lies in the fact that it can be utilized to reduce particular bPOE minimization problems
to convex, sometimes even linear, programming. For an in-depth study of bPOE and its specific
properties, we refer readers to Mafusalov and Uryasev (2015).

3.3 bPOE Optimization

To demonstrate the ease with which bPOE can be integrated into optimization frameworks, partic-
ularly when compared to POE, consider the following optimization setup. Assume we have a real
valued positive homogenous random function f(w,X) determined by a vector of control variables
w ∈ Rn and a random vector X. By definition, a function f(w,X) is “positive homogeneous” with
respect to w if it satisfies the following condition: af(w,X) = f(aw,X) for any a ≥ 0, a ∈ R. Note
that we consider only positive homogeneous functions since they are the type of error function we
consider in the case of AUC.

Now, assume that we would like to find the vector of control variables, w ∈ Rn, that minimize
the probability of f(w,X) exceeding a threshold of z = 0. We would like to solve the following
POE optimization problem.

min
w∈Rn

p0(f(w,X)) . (13)

Here we have a discontinuous and non-convex objective function (for discretely distributed X) that
is numerically difficult to minimize. Consider minimization of bPOE, instead of POE, at the same
threshold z = 0. This is posed as the optimization problem

min
w∈Rn

p̄0(f(w,X)) . (14)

Given Proposition 1, (14) can be transformed into the following.

min
w∈Rn,γ<0

E[f(w,X)− γ]+

−γ
. (15)
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Notice, though, that the positive homogeneity of f(w,X) allows us to further simplify (15) by
getting rid of the γ variable. Thus, we find that bPOE minimization of f(w,X) at threshold z = 0
can be reduced to (16).

min
w∈Rn

E[f(w,X) + 1]+ . (16)

For convex f , (16) is a convex program. Furthermore, if f is linear, (16) can be reduced to
linear programming. This is substantially easier to handle numerically than the non-convex and
discontinuous POE minimization (13).

Given the attractiveness of bPOE and the superquantile within the optimization context, we are
inclined to apply these concepts to define a bPOE variant of AUC. Not only would this buffered
variant give way to more well behaved optimization problems, but it would provide a measure
of classifier performance that considers the magnitude of ranking errors ξij(h) instead of only a
discrete count of the number of ranking errors exceeding zero.

4 Buffered AUC: A New Performance Metric

4.1 Buffered AUC

With AUC defined as 1−P (ξ(h) ≥ 0), we can create a natural alternative to AUC called Buffered
AUC (bAUC) by using bPOE instead of POE. If we assume that we have samples of our random
vectors X+, X− and are thus working with the empirical distribution of ranking errors ξij(h), we
have that bAUC equals one minus the proportion of largest ranking errors ξij(h) that have average
magnitude equal to zero. Specifically, we have the following general definition.

Definition 2 (Buffered AUC ). For a scoring function h : Rn → R, bAUC of h is defined as

bAUC(h) = 1− p̄0 (ξ(h)) . (17)

To begin, we can look at a graphical example comparing bAUC and AUC in Figure 2. Here,
we plot the distribution of ranking errors ξij(h) for a fixed scoring function h for some dataset.
In the bottom chart, we highlight the errors exceeding zero, i.e. the ranking errors considered by
AUC. Thus, in the bottom chart, AUC equals one minus the proportion of errors larger than zero.
In the top chart, we highlight the largest errors that have average magnitude equal to zero, i.e.
the ranking errors considered by bAUC. Thus, in the top chart, we see that bAUC is smaller than
AUC, as it considers not only errors larger than zero but also some negative errors most near to
zero.

This metric, utilizing bPOE instead of POE, is similar to AUC. Both are concerned with ranking
errors, measuring the tail of the error distribution ξ(h). In fact, as shown below in Proposition 2,
bAUC is a lower bound for AUC. Thus, classifiers with large bAUC necessarily have large AUC.

Proposition 2. For a scoring function h : Rn → R,

bAUC(h) ≤ AUC(h)

Proof. From Mafusalov and Uryasev (2015), we know that for any threshold z ∈ R and real valued
random variable X that, P (X > z) ≤ p̄z(X). Therefore, 1− p̄0 (ξ(h)) ≤ 1− P ((ξ(h) ≥ 0).

Unlike AUC, though, bAUC is sensitive to the magnitude of ranking errors ξ(h). In addition,
bAUC does not only consider ranking errors, meaning ξij(h) > 0. It also takes into account the
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Figure 2: In both charts, we plot the same distribution of ranking errors ξij(h) for a fixed h. In the top chart, we
highlight the largest errors that have average magnitude equal to zero, i.e. the errors considered by bAUC. In the
bottom chart, we highlight the errors that exceed zero, i.e. the errors considered by AUC. We have that bAUC=.6074
and AUC=.8316.

confidence with which the classifier correctly ranked some instances, meaning the ‘errors’ that are
less than, but most near to zero. These correctly ranked instances constitute the buffer. We discuss
this concept and other differences further in the next section.

4.2 The bAUC Buffer and Sensitivity to Classifier Confidence

Focusing on the benefits of bAUC’s sensitivity to the magnitude of ranking errors ξij(h), we provide
two examples illustrating situations where two classifiers give the same AUC, but where one of the
classifiers is clearly a better ranker than the other. We show how bAUC reveals this discrepancy.
The first example focuses on the importance of the bAUC buffer. The second example simply
illustrates a situation where the magnitude of the ranking errors larger than zero, ξij(h) > 0, would
be important when selecting between classifiers.

As already mentioned, bAUC considers the magnitude of the positive errors, ξij(h) > 0. Im-
portantly, bAUC also considers the magnitude of the ‘errors’ that are less than, but most near to
zero. This buffer may be important as illustrated in the following example. Let Iλ be an indicator
function as specified in Section 2.1. Consider the task of comparing the ranking ability (on the
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same data set) of two imperfect classifiers2, h1 and h2, that have equal AUC values, meaning that

(a)

1− 1

m+m−

∑
i

∑
j

Iξij(h1)≥0

 =

1− 1

m+m−

∑
i

∑
j

Iξij(h2)≥0

 > 0 .

Assume also that both classifiers produce incorrect rankings with the same magnitude (i.e. confi-
dence), meaning that

(b) ξij(h1) = 1 ∀ (i, j) with ξij(h1) ≥ 0 and ξij(h2) = 1 ∀ (i, j) with ξij(h2) ≥ 0 .

Finally, assume that h1 produces correct rankings more confidently than h2, where

(c) ∀ (i, j) such that ξij(h1) < 0 we have that ξij(h1) < min
s,k

ξsk(h2) .

From (a), we see that both classifiers will have equal AUC. Then from (b), we see that the
classifiers have identical distributions of errors greater than or equal to zero. But finally, considering
(c) reveals that the distribution of negative errors (i.e. the correct rankings) for h1 is more favorable
than that of h2. Thus, we see that h1 is superior w.r.t. ranking ability. The AUC metric does not
reveal this fact, since both classifiers have equal AUC. The bAUC metric, though, because of the
buffer, correctly distinguishes between the ranking ability of h1 and h2. Specifically, we will find
that bAUC(h1) > bAUC(h2) with the buffer accounting for the magnitude of errors not only in
(b), but also in (c).3

Illustrating a similar situation, not necessarily involving the buffer but instead involving bAUC’s
sensitivity to the magnitude of positive ranking errors, consider again two classifiers, h1 and h2,
with equal AUC (i.e. satisfying (a)). Assume also that both classifiers produce correct rankings
with the same magnitude (i.e. confidence), meaning that

(d) ξij(h1) = −1 ∀ (i, j) with ξij(h1) < 0 and ξij(h2) = −1 ∀ (i, j) with ξij(h2) < 0 .

Finally, assume that h2 produces incorrect rankings more severe than those produced by h1, where

(e) ∀ (i, j) such that ξij(h2) ≥ 0 we have that ξij(h2) > max
s,k

ξsk(h1) .

From (a), we see that both classifiers will have equal AUC. Then from (d), we see that the classifiers
have identical distributions of errors less than zero. But finally, considering (e) reveals that the
distribution of errors larger than or equal to zero (i.e. the incorrect rankings) for h1 are more
favorable than that of h2. Once again, AUC indicates that these classifiers perform equivalently
with respect to ranking ability. The bAUC metric, though, by considering the magnitude of errors,
is able to properly distinguish between the two classifiers. Specifically, because of (d) and (e), we
will have that bAUC(h1) > bAUC(h2).4

4.3 Optimizing bAUC

Direct maximization of AUC is rarely done due to the troublesome properties of probabilistic
objectives, even for the simplest classifier such as the linear classifier h(X)− t = wTX − t, w ∈ Rn.

2Although we say “classifier”, we are omitting the decision thresholds t1, t2 since they are not necessary for AUC
and bAUC.

3We do make the assumption that bAUC(h1) 6= 0, which is to assume that E[ξ(h1)] < 0.
4Again, we make the assumption that bAUC(h1) 6= 0, which is to assume that E[ξ(h1)] < 0.
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Direct maximization of bAUC, on the other hand, reduces to convex programming and linear
programming for the linear classifier. Let ξ(w) = −wT (X+ − X−). Maximization of AUC takes
the form,

max
w∈Rn

1− P (ξ(w) ≥ 0) , (18)

where the probabilistic objective is discontinuous and non-convex when dealing with empirical
observations of X+ and X−. Maximization of bAUC takes the form

max
w∈Rn

1− p̄0 (ξ(w)) = 1− min
w∈Rn

p̄0 (ξ(w)) . (19)

Applying Proposition 1, (19) becomes

1− min
w∈Rn,γ<0

E [ξ(w)− γ]+

−γ
. (20)

Finally, given the positive homogeneity of ξ(w), we can apply minimization formula (16) and
simplify to (21),

min
w∈Rn

E[ξ(w) + 1]+ . (21)

In financial optimization literature, the function E[.]+ is called Partial Moment. It is a very popular
function in various applications of stochastic programming.

Here, (21) is a convex optimization problem and, moreover, can be reduced to linear pro-
gramming with reduction to (22) via auxiliary variables. Thus, in the case of a linear classifier,
maximizing bAUC is substantially easier to handle than AUC maximization, a non-convex and
discontinuous optimization problem.

min
w∈Rn,βij∈R

1

m+m−

m+∑
i=1

m−∑
j=1

βij

s.t. βij ≥ ξij(w) + 1, ∀ i = 1, ...,m+, j = 1, ...,m−

βij ≥ 0 .

(22)

4.4 bAUC and the ROC curve

As discussed in Section 2.1, AUC can also be defined as the area under the ROC curve. We show
here that bAUC can also be represented as the area under a slightly modified ROC curve, which
we call the Buffered ROC (bROC) curve.

Proposition 3. For a fixed scoring function h : Rn → R, assume that ξ(h) is continuously dis-
tributed and that

bAUC(h) = 1− α = 1− E[ξ(h)− γ∗]+

−γ∗
where γ∗ ∈ argmin

γ<0

E[ξ(h)− γ]+

−γ
.

Then,

bAUC(h) =

∫
t
P
(
h(X+) ≥ t− γ∗

)
dP
(
h(X−) > t

)
.
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Proof. This follows from Proposition 1. Specifically, if z ∈ (E[X], supX) and γ∗ ∈ argmin
γ<z

E[X−γ]+

z−γ

then, since ξ(h) is continuously distributed, we know that γ∗ = q1−p̄z(X). This, along with the
continuity again, implies that P (X > γ∗) = p̄z(X). Applying this to bAUC, we get that

bAUC(h) = 1− p̄0

(
−h(X+) + h(X−)

)
= 1− P (−h(X+) + h(X−) > γ∗)

= P (−h(X+) + h(X−) ≤ γ∗)
= P (h(X+) + γ∗ ≥ h(X−))

=

∫
t
P
(
h(X+) ≥ t− γ∗

)
dP
(
h(X−) > t

)
.

Proposition 3 is shown graphically in Figure 3 with a slightly modified ROC plot. Here, instead
of plotting the pairs (P (h(X−) > t), P (h(X+) > t)) for all thresholds t ∈ R to generate an ROC
curve, we plot the pairs (P (h(X−) > t), P (h(X+) ≥ t− γ∗)) for all thresholds t ∈ R to generate the
bROC curve. This yields a curve on the modified ROC plot that has area underneath it equal to
bAUC(h). Note that the continuity assumption on ξ(h) assures that P (X > γ∗) = p̄z(X). For non-
continuous distributions, this relation is approximate, since we can only assure that γ∗ = q1−p̄z(X)

is an argmin. In this case, though, we follow the methodology of AUC and simply approximate the
curve via interpolation.

We can also interpret the bROC curve as the normal ROC curve of a more conservative scoring
function ĥ with positive class score distribution ĥ(X+) = h(X+) + γ∗ and negative class score
distribution ĥ(X−) = h(X−).5 We have shifted the distribution of positive class scores toward
the distribution of negative class scores by the amount γ∗. By Proposition 4, we know that γ∗ =
{z ∈ R | E[ξ(h)|ξ(h) > z] = 0} < 0. Therefore, since γ∗ is determined by the tail of the error
distribution ξ(h), the bROC curve is the ROC curve of a conservative variant of the original scoring
function, where the magnitude of conservatism is based upon the ranking errors produced by the
scoring function h.

4.5 Numerical Experiments

In this section, we present numerical examples demonstrating that: (1) bAUC is a counterpart of
AUC that can be used to differentiate between classifiers with almost identical AUC; (2) bAUC
does not always agree with AUC and is indeed a unique performance metric that does not simply
move linearly with AUC. In these experiments, we also show that the bROC curve can provide
additional discriminatory insights not revealed by the ROC curve.

For all experiments, we use real data sets from the UCI machine learning repository Lichman
(2013) and compare an SVM classifier with a logistic regression classifier (both L2 regularized6).

4.5.1 bAUC as a tiebreaker

In some cases, two classifiers can yield similar AUC values, even if their score distributions are
vastly different. Here, much like the theoretical example provided in Section 4.2, we show that
bAUC can reveal classifier properties which are not reflected by AUC. We also show that while

5The choice of score distribution to shift is arbitrary. One can shift h(X−) by −γ∗.
6The specific value of the tradeoff parameter is not particularly noteworthy, so we do not list it. The purpose here

is to simply compare classifiers as opposed to searching for an optimal one via parameter search.
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Figure 3: We have a fixed classifier h. The area under the upper curve corresponds to AUC(h), where γ∗ = 0. The
area under the lower curve corresponds to bAUC(h), where γ∗ < 0.

the ROC curves may be almost identical, the bROC curves can be different, offering additionally
discriminatory insights to supplement the summary insight of the bAUC metric.

For the first experiment, we compared two classifiers trained on the Page-Blocks dataset. Figure
4 shows the ROC and bROC curves for these classifiers as well as their AUC and bAUC values. First,
notice that for these two classifiers, AUC values and ROC curves are almost identical, providing
little discriminatory insight to compare classifiers. Looking at bAUC values, we see that the logistic
regression classifier has larger bAUC. Additionally, we see that the bROC curves are dramatically
different. Looking at the slope of the bROC curves, we can see that the SVM classifier is quit
unstable, with the large slope revealing that the score distribution is highly concentrated on a small
threshold interval. We can demonstrate this fact by looking at the score distributions themselves
in Figure 5. Clearly, the logistic regression classifier produces a more stable score distribution with
respect to threshold changes, as the SVM has a score distribution that is very sensitive to changes

Figure 4: Solid line corresponds to logistic regres-
sion with AUC=.962 and bAUC=.844, dashed line is
SVM with AUC=.961 and bAUC=.810.

Figure 5: Histogram of scores provided by classifiers.
Upper chart is SVM scores. Lower chart is logistic
regression scores.
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Figure 6: Solid line is logistic regression with AUC=.738 and bAUC=.406, dashed line is SVM with AUC=.731 and
bAUC=.376.

in decision threshold because of the concentration of scores in a very small range.
For the second experiment, we compare a logistic regression and SVM classifier trained on

the Breast Cancer Wisconsin Prognostic dataset. Figure 6 shows the resulting bAUC and AUC
values and the ROC and bROC curves. In addition to the bAUC metric yielding a more definitive
discrimination between classifiers, we see that it is easier to gain insight regarding the dominance
of a classifier over thresholds by looking at the bROC curve. Looking at the ROC curves, it is
difficult to differentiate, with the curves crossing multiple times. Looking at the bROC curve,
though, the logistic regression classifier tends to dominate the SVM classifier except for thresholds
at the extremes of the spectrum. If having to select between these two classifiers, bAUC and the
bROC curve add confidence to the argument that the logistic classifier is superior.

4.5.2 bAUC as a different metric

With bAUC being a lower bound of AUC that is similarly measuring a classifier’s ability to properly
rank, these values will often be in agreement as to the superior classifier. We demonstrate, though,
that this is not always the case and present two examples. For the first experiment, we trained
classifiers on the Liver Disorders dataset. Figure 7 shows the resulting AUC and bAUC values as
well as the ROC and bROC curves. Not only are the bAUC and AUC metrics in disagreement as
to the optimal classifier, but the ROC and bROC curves are almost complete opposites. The ROC
curves and bROC curves indicate that the classifiers are superior for completely opposite ranges of
threshold.

For the second experiment, we trained again on the Breast Cancer Wisconsin Prognostic dataset
yielding different classifiers by altering the regularization parameters from previous experiments.
Figure 8 shows that the bAUC and AUC values do not agree. Additionally, one can see that
the bROC curve is much easier to read. The ROC curves cross multiple times, making it almost
impossible to differentiate via visual inspection. The bROC curves only cross once, making analysis
of classifier performance much easier with respect to different ranges of threshold choice.
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Figure 7: Solid line is logistic regression with
AUC=.711 and bAUC=.234, dashed line is SVM
with AUC=.704 and bAUC=.298.

Figure 8: Solid line is logistic regression with
AUC=.651 and bAUC=.195, dashed line is SVM
with AUC=.638 and bAUC=.200.

4.5.3 Software Implementation for Linear Classifiers

For linear classifier h(X) − t = wTX − t, w ∈ Rn the maximization of bAUC reduces to bPOE
minimization for linear function ξ(w) = −wT (X+ − X−) = −wTX+ + wX−, see (19) and (21).
Although this minimization is convex w.r.t. decision variables, the implementation of bAUC cal-
culation and optimization is non-trivial. In particular, calculating bAUC for a sample distribution
requires calculating m+m− instances of ξij(h). Additionally, the LP representation (22) for bAUC
optimization has O(m+m−) constraints. Because of this, many commercial optimization packages
may struggle to handle bAUC calculation and optimization efficiently.

From a practical point of view, if bAUC is to be effectively utilized in experimentation, it is
critical that there exist a highly efficient implementation of bAUC calculation and optimization.
Software should take into account the special structure of the optimization problem. We have used
Portfolio Safeguard (PSG)7 which has specialized routines for Partial Moment and bPOE mini-
mization. The Partial Moment and bPOE function, as well as many other stochastic functions,
are precoded allowing the user to include them in analytic format in optimization problem state-
ments. Because of this precoding, PSG can efficiently invoke specially developed algorithms for
these analytic expressions.

For the interested reader, a PSG case study using the precoded partial moment function can be
found online.8 This case study provides data sets and PSG codes for both MATLAB and Run-File
(text) environments. Example PSG code for Partial Moment minimization, which implements the
problem statement (21), is as follows:

minimize

pm pen(-1,L(matrix 0)-L(matrix 1))

The function pm pen(-1,L(matrix 0)-L(matrix 1)) is the partial moment function

E[wTX− − wTX+ + 1]+ .

This function is applied to the difference of random values wTX− − wTX+ exceeding −1, with
matrices of scenarios matrix 0 and matrix 1 defining these random differences. The code can
handle large sample sizes. For example, Problem 1 in the case study minimizes the partial moment

7www.aorda.com
8http://www.ise.ufl.edu/uryasev/research/testproblems/advanced-statistics/case-study-bAUC-maximization/
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with m+ = 3, 990, m− = 2, 788 in 0.13 second on a 3.14GHz PC. This problem is equivalent to a
bPOE minimization problem with m+m− = 11, 124, 120 scenarios.

PSG can also maximize bAUC directly by using the precoded bPOE function, as specified in the
problem statement (19). An example of bAUC maximization using the precoded bPOE function
can be found online9.

5 Generalized bAUC: Utilizing Non-zero Thresholds

Previously, we considered the definition of bAUC to be one minus the buffered probability of the
error function ξ(h) exceeding the threshold of z = 0 (i.e definition (2) ). Consider now a more
general definition of bAUC with thresholds z ∈ R.

Definition 3. Generalized bAUC is defined as follows,

bAUCz(h) = 1− p̄z(ξ(h)) .

5.1 Generalized bAUC and the ROC Curve

Just as bAUC was shown to correspond to the area under a modified ROC curve, we have that
bAUCz for any z ∈ R corresponds to the area under a curve on the same, modified ROC plot.
This generates a family of ROC curves, in which AUC and bAUC are members. Specifically, we
have the following proposition, the proof of which we omit since it is essentially identical to that
of Proposition 3.

Proposition 4. For a fixed scoring function h : Rn → R, assume that ξ(h) is continuously dis-

tributed and that bAUCz(h) = 1− α = 1− E[ξ(h)−γ∗]+

z−γ∗ where γ∗ ∈ argmin
γ<z

E[ξ(h)−γ]+

z−γ . Then,

bAUCz(h) =

∫
t
P
(
h(X+) ≥ t− γ∗

)
dP
(
h(X−) > t

)
.

Notice in Proposition 4, that if we choose z0 such that γ∗ = 0, we will have bAUCz0(h) =
AUC(h). Thus, we see that AUC belongs to the family of curves associated with bAUCz, z ∈ R.
Showing this on the ROC plot, we have Figure 9 which displays a family of bAUCz curves.

5.2 Maximizing Generalized bAUC

Given Generalized bAUC, it is not immediately clear how to utilize it. Here, we show that Gen-
eralized bAUC has already been utilized successfully for AUC maximization, albeit not explicitly.
Specifically, we find that the popular AUC maximizing RankSVM from Brefeld and Scheffer (2005),
Herbrich et al. (1999) is equivalent to a special case of direct maximization of Generalized bAUC.
We first provide a formulation for maximizing bAUCz and then show that the AUC maximizing
RankSVM is a special case of this formulation (specifically, for threshold range z ≤ 0). In this
context, we work with h(X) = wTX and ranking error ξ(w) = −wT (X+ −X−).

Consider the problem of finding the vector w ∈ Rn which maximizes bAUCz(w). In other words,
we would like to solve the following optimization problem.

min
w∈Rn,γ<z

E[ξ(w)− γ]+

z − γ
≡ min

w∈Rn
p̄z (ξ(w)) . (23)

9http://www.ise.ufl.edu/uryasev/research/testproblems/financial engineering/%20classification-in-loan-
application-process%20/

18



Figure 9: A modified ROC plot for a fixed classifier h. The lower most curve corresponds to bAUC0(h) while the
uppermost curve corresponds to bAUCz0(h) = AUC(h). The curves in-between correspond to bAUCz(h) for values
of z ∈ (0, z0).

However, this problem is ill-posed. As was shown in Norton et al. (2015), this formulation yields
trivial solutions for thresholds z 6= 0 due to the positive homogeneity of the error function ξ(w)
(see appendix of Norton et al. (2015) for details). This issue, though, can be alleviated by fixing
the scale of the vector w. This can be accomplished by fixing any general norm on w, effectively
minimizing bPOE of the normalized error distribution ξ(w)

‖w‖ . Thus, we can consider the following

optimization problem which maximizes bAUCz for non-zero thresholds, where ‖ · ‖ is any general
norm,

min
w∈Rn,γ<z

E[ξ(w)− γ]+

z − γ
≡ min

w∈Rn
p̄z

(
ξ(w)

‖w‖

)
s.t. ‖w‖ = 1 .

(24)

Furthermore, using the result from Norton et al. (2015) we know that to maximize bAUCz, we
can alternatively solve the following equivalent problem, which is convex for thresholds z ≤ 0,

min
w∈Rn

p̄z

(
ξ(w)

‖w‖

)
≡ min

w∈Rn
E[ξ(w)− z‖w‖+ 1]+ . (25)

The last formula is easy to interpret. Specifically, adapting a result from Norton et al. (2015),
we have the following proposition.

Proposition 5. For z ∈ R, assume that

1− α∗ = min
w∈Rn

E[ξ(w)− z‖w‖+ 1]+ = E[ξ(w∗)− z‖w∗‖+ 1]+ .

Then for the normalized error, F := ξ
(

w∗

‖w∗‖

)
, at the optimal point w∗:

p̄z (F ) = 1− α∗, q̄α∗ (F ) = z, qα∗ (F ) = z − 1

‖w∗‖
.

19



In the next section, after showing that (25) and the RankSVM are equivalent over the parameter
range z ≤ 0, we find that Proposition 5 provides us with a novel interpretation for the optimal
objective value and free parameter of the RankSVM.

5.3 RankSVM Maximizes Generalized bAUC

In Brefeld and Scheffer (2005), Herbrich et al. (1999), the AUC maximizing RankSVM is derived
and shown to maximize AUC better than the traditional max-margin SVM’s proposed by Cortes
and Vapnik (1995). Utilizing a result from Norton et al. (2015), we can show that RankSVM is
equivalent to direct maximization of Generalized bAUC for thresholds z ≤ 0. This serves to show
in a more exact manner that the AUC maximizing SVM is, in fact, maximizing a lower bound on
AUC, specifically Generalized bAUC. This equivalence also suggests a novel interpretation for the
optimal objective value of the RankSVM and the free parameter.

The RankSVM is formulated as follows, where z ≤ 0 is typically introduced as a parameter
specifying the tradeoff between ranking error and regularization. Traditionally, the squared L2

norm is used, but we use any general norm.

min
w

− z‖w‖+
1

m+m−

m+∑
i=1

m−∑
j=1

[ξij(w) + 1]+ . (26)

This is a reformulation of the well known C-SVM of Cortes and Vapnik (1995), reformulated for
AUC maximization. Let Yi ∈ {−1,+1}, i = 1, .., N indicate the class of samples X1, ..., XN , let
z ≤ 0, and let (w, b) ∈ Rn+1. The C-SVM is formulated as follows,

min
w,b

− z‖w‖+
1

N

N∑
i=1

[−Yi(wTXi + b) + 1]+ . (27)

Relating the C-SVM to bPOE minimization, Norton et al. (2015) introduced the EC-SVM formu-
lation, which is identical to bPOE minimization problem (25) but with error function ξ(w, b) =
−Y (wTX + b). The EC-SVM is formulated as follows, where z ∈ R.

min
w,b

E[−Y (wTX + b)− z‖w‖+ 1]+ . (28)

Specifically, the EC-SVM and C-SVM were related through the following proposition which
shows that the traditional soft margin SVM of Cortes and Vapnik (1995) is equivalent to minimizing
bPOE.

Proposition 6. Consider (27) and (28) formulated with the same norm and assume that we have
N equally probable samples (Xi, Yi), i = 1, ..., N . Then, over the parameter range z ≤ 0, (27) and
(28) achieve the same set of optimal solutions.

Using Proposition 6, we can prove that RankSVM is simply maximizing Generalized bAUC.

Proposition 7. Consider (26) and (25) formulated with the same norm and assume that we have
m+m− equally probable realizations of the random error ξij(w), i = 1, ...,m+, j = 1, ...,m−. Then,
over the parameter range z ≤ 0, (26) and (25) achieve the same set of optimal solutions.

Proof. Note that (26) is exactly formulation (27) with m+m− samples (X+
i −X

−
j ), i = 1, ...,m+,

j = 1, ...,m− all having class Yij = +1 and with the classifier intercept b = 0. Thus, applying
Proposition 6, we have that (26) and (25) produce the same set of optimal solutions over the
parameter range z ≤ 0.
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With this equivalence, we can draw a novel interpretation of the free parameter of the RankSVM
and its optimal objective from Property 5. Specifically, we can now interpret the trade off parameter
z ≤ 0 as Generalized bAUC threshold. Additionally, we can conclude that one minus the optimal
objective of the RankSVM equals a probability level, specifically Generalized bAUC for some z. We
do not present this formally here, as it follows directly from Norton et al. (2015) and the analysis
of the dual formulations of (27) and (28).

6 Buffered Accuracy and SVM’s

As already mentioned in the introduction, Accuracy can also be viewed as the probability that
misclassification error exceeds the threshold of zero. In binary classification, misclassification error
is often characterized as the margin error,

ξ(w, b) =
−Y (wTX + b)

‖w‖
.

With this, Accuracy (Acc) is defined as the following.

Definition 4. Accuracy
Acc(w, b) = 1− P (ξ(w, b) ≥ 0)

Just as we did with AUC, we can apply bPOE to create Buffered Accuracy (bAcc).

Definition 5. Buffered Accuracy

bAcc(w, b) = 1− p̄0(ξ(w, b))

We can also define this in a more general manner, creating Generalized bAcc.

Definition 6. Generalized Buffered Accuracy

bAccz(w, b) = 1− p̄z(ξ(w, b))

In this paper, we do not fully explore the properties and benefits of Buffered Accuracy as an
alternative metric. To motivate the general theme of this paper, though, we emphasize the result
of Norton et al. (2015) showing that the classical soft margin SVM from Cortes and Vapnik (1995)
is simply maximizing Generalized Buffered Accuracy directly. This is exactly what is shown in
Proposition 6 which can be seen more clearly by noting that optimization problem (28) is equivalent
to the following,

max
w,b

bAccz(w, b) . (29)

Therefore, we see that bAcc already plays a major role in classification as an easily optimizable
metric alternative to Acc. This lends credibility to the idea of defining bPOE counterparts for
metrics defined with POE.

7 Conclusion

AUC is a useful and popular metric for measuring the ranking quality of scores given by a classifier.
As a metric defined with POE, though, it does not consider the magnitude of ranking errors
and is numerically difficult to optimize. We utilize bPOE to create an informative counterpart
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metric called bAUC. We show that bAUC is indeed a counterpart. It is a readily optimizable
lower bound of AUC that can also be viewed as the area under a modified ROC curve. We
also show that bAUC is an important counterpart to AUC when the magnitude of ranking errors
yields important discriminatory information. Additionally, the bROC curve can provide additional
discriminatory insights when comparing classifiers, particularly when ROC curves are very similar
and cross multiple times.

To facilitate the creation of bAUC, we focused our attention on deriving a novel formula for
calculating bPOE, the inverse of the superquantile (CVaR). We show that this formula is significant,
allowing certain bPOE minimization problems to be reduced to convex and linear programming.
Applying this to bAUC, we show that this reduction applies to bAUC allowing for efficient bAUC
maximization.

By considering non-zero bPOE thresholds in the definition of bAUC, we also introduce Gener-
alized bAUC. We show that Generalized bAUC generates a family of metrics, in which AUC and
bAUC belong. Furthermore, we show that Generalized bAUC has already found its way into the
AUC maximization literature. Specifically, we show that the popular AUC maximizing RankSVM
is equivalent to maximization of Generalized bAUC. Thus, bAUC has already, in some sense, been
used as a metric counterpart to AUC that is much simpler to optimize.

In the broader scheme, we find evidence that utilizing bPOE to create informative, efficiently
optimizable metrics is a fruitful approach. Although we focus our in-depth analysis on creating
a bPOE variant of AUC, we show that the bPOE variant of Accuracy already has deep roots in
the SVM literature by showing that the famous soft margin C-SVM is equivalent to maximization
of Buffered Accuracy. Therefore, this suggests that POE and bPOE can be used in tandem to
create counterpart metrics like AUC and bAUC. Defining metrics with POE is highly intuitive,
but produces metrics that are numerically difficult to optimize. For example, Accuracy, while
being difficult to optimize directly, is an intuitive concept relating to the probability that some
error exceeds zero. Utilizing bPOE, one can create a complimentary counterpart to the intuitive
POE metric that reveals information about the magnitude of errors while proving to be efficiently
optimizable with convex or linear programming.
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8 Appendix

Here, we discuss the slight differences between Upper and Lower bPOE. First, Lower bPOE is
defined as follows.

Definition 7. Let X denote a real valued random variable and z ∈ R a fixed threshold parameter.
bPOE of random variable X at threshold z equals

p̄Lz (X) =


0, if z ≥ supX ,

{1− α|q̄α(X) = z}, if E[X] < z < supX ,

1, otherwise.
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Upper bPOE is defined as follows.

Definition 8. Upper bPOE of random variable X at threshold z equals

p̄Uz (X) =

{
max{1− α|q̄α(X) ≥ z}, if z ≤ supX ,

0, otherwise.

Upper and Lower bPOE do not differ dramatically. This is shown by the following proposition.

Proposition 8.

p̄Uz (X) =

{
p̄Lz (X), if z 6= supX ,

P (X = supX), if z = supX.

Proof. We prove four cases.
Case 1: Assume z > supX. By Definition 1, p̄Lz (X) = 0. By Definition 2, p̄Uz (X) = 0.
Case 2: Assume E[X] < z < supX. By Definition 1, p̄Lz (X) = {1− α|q̄α(X) = z}. By Definition
2, p̄Uz (X) = max{1 − α|q̄α(X) ≥ z}. Since q̄α(X) is a strictly increasing function of α on α ∈
[0, 1 − P (X = supX)], q̄α(X) = z has a unique solution. Therefore, we have that p̄Uz (X) =
max{1− α|q̄α(X) ≥ z} = {1− α|q̄α(X) = z} = p̄Lz (X).
Case 3: Assume z ≤ E[X], z 6= supX. By Definition 1, p̄Lz (X) = 1. Since q̄0(X) = E[X],
max{1− α|q̄α(X) ≥ z} = 1 implying that p̄Uz (X) = 1.
Case 4: Assume z = supX. Following from the fact that q̄(1−P (X=supX))(X) = supX, we have

that p̄Ux (X) = max{1− α|q̄α(X) ≥ z} = P (X = supX).

Thus, one will notice that Upper and Lower bPOE are equivalent when z 6= supX. The
difference between the two definitions arises when threshold z = supX. In this case, we have that
p̄Lz (X) = 0 while p̄Uz (X) = P (X = supX). Thus, for a threshold z ∈ (E[X], supX), both Upper
and Lower bPOE of X at z can be interpreted as one minus the probability level at which the
superquantile equals z. Roughly speaking, Upper bPOE can be compared with P (X ≥ z) while
Lower bPOE can be compared with P (X > z).

The importance of using Upper bPOE instead of Lower bPOE in the definition of bAUC should
be noted here. To illustrate, consider a trivial classifier with w = 0. Clearly this is not a very good
classifier. Using Upper bPOE, we find that 1 − p̄U0 (ξ(w)) = 1 − P (ξ(w) = sup ξ(w)) = 1 − 1 = 0.
Using this number as our ranking ability performance metric intuitively makes sense, i.e. assigning
the trivial classifier the lowest possible bAUC, reflecting its poor ranking ability. What if we use
Lower bPOE instead? Using Lower bPOE, we find that 1 − p̄L0 (ξ(w)) = 1 − 0 = 1. Using this as
our measure of ranking ability does not make much sense. Thus, we find that Upper bPOE treats
losses at the supremum in a manner more fitting to our application, i.e. measuring the ranking
ability of a classifier.
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