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a b s t r a c t

In this letter, we study the derivatives and subderivatives of buffered probability of exceedance (bPOE), in
which we provide the mathematical expressions with rigorous proofs for the case when bPOE is smooth.
Furthermore, we extend the study to a general non-smooth case for which a set of quasigradients are
explored, under a mild assumption, i.e., the corresponding random function with respect to the decision
variable is convex.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Due to its advantages in convexity and reduction of optimiza-
tion to linear and convex programming [9], Conditional Value-
at-Risk (CVaR) has become a popular risk measure in financial
optimization and other engineering areas. As an alternative to
CVaR, buffered probability of exceedance (bPOE) has been recently
introduced in [4], mostly as one minus inverse of CVaR. The bPOE
concept is an extension of the buffered failure probability sug-
gested in [8]. By definition, bPOE is the probability of a tail such
that the average of this tail equals the threshold. The pair of bPOE
and CVaR has advantages as compared to the pair of probability
of exceedance (POE) and Value-at-Risk (VaR) because the former
maintains quasiconvexity (for bPOE as shown in [4]) and convexity
(for CVaR as shown in [9]). This advantage leads to efficient al-
gorithms for solving optimization problems. Moreover, according
to [4], bPOE is a monotonic function of the random variable; it
is a strictly decreasing function of the threshold on the interval
between the expectation and the essential supremum. The multi-
plicative inverse of the bPOE is a convex function of the threshold,
and a piecewise-linear function in the case of discretely distributed
random variable. A family of bPOE minimization problems and
corresponding CVaR minimization problems share the same set
of optimal solutions. Derivatives of bPOE are needed for efficient
implementations of optimization methods. These derivatives also
can be used for sensitivity analysis in various application areas,
such as network optimization [6], data mining algorithms [5,7],
among others.
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Since bPOEderivatives cannot be derived from the quite general
results for Risk, Deviation, Regret, and Error considered in [3], this
paper derives formulas for derivatives of bPOE for the smooth
case and quasigradients for the general nonsmooth case. For the
smooth case, we provide conditions for continuous differentia-
bility of bPOE. For the general case, we assume the convexity
of the corresponding random function embedded in bPOE and
provide a set of quasigradients belonging to subdifferential of qua-
siconvex function. We finally provide an example illustrating the
formula.

Before we describe our main results, we first list the related
definitions as described in [9] and [4] for the completeness of this
letter.

Definition 1. Let V (x) = f (x, y) be a random variable with
randomness represented by y ∈ Rm, where x ∈ X ⊆ Rn can be
seen as a decision variable, and the function f (x, y) is called random
function.

Definition 2. Cumulative Distribution Function (CDF) of the ran-
dom variable V (x):

Ψ (x, ζ ) = P[V (x) ⩽ ζ ].

Definition 3. Value-at-Risk (VaR) of the random variable V (x):

ζα(x) = min
ζ∈R

{ζ |Ψ (x, ζ ) ⩾ α}.

Definition 4. Upper Value-at-Risk (VaR+) of the random variable
V (x):

ζ+

α (x) = inf
ζ∈R

{ζ |Ψ (x, ζ ) > α}.
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Definition 5. The CVaR of the random variable V (x):

qα(V (x)) = mean of the α-tail distribution of V (x),

where the distribution in question is the one with distribution
function Ψα(x, ·) defined by

Ψα(x, ζ ) =

{
0, ζ < ζα(x),

(Ψ (x, ζ ) − α)/(1 − α), otherwise.

Definition 6. Upper bPOE of the random function V (x), which is
called just bPOE in this paper:

pz(V (x))=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, z > sup V (x);

P(V (x)=supV(x)), z = sup V (x);

1 − α(x, z), E[V (x)]<z<sup V (x);

1, otherwise,

where for z ∈ (E[V (x)], sup V (x)), α(x, z) is the inverse of qα(V (x))
as a function of α.

In the following sections, we prove the claims based on the
inverse relationship between CVaR and bPOE, i.e., we only study
derivatives and subderivatives of bPOE with the mathematical
expression pz(V (x)) = 1 − α(x, z) when E[V (x)] < z < sup V (x) as
described in Definition 6.

2. Derivatives of smooth case

In the interval z ∈ (E[V (x)], sup V (x)), we solve for α from the
following equation to obtain the bPOE

qα(V (x)) = z,

where z is a real-valued threshold, and the solution to bPOE is a
function of x and z.We only need to derive the derivatives ofα(x, z)
with regard to x and z. Accordingly, to show this, we first let

F (x, z, α) = qα(V (x)) − z, (1)

where x ∈ Rn and z, α ∈ R. In addition, for each w = (x, z, α) ∈

Rn+2, we denote U(w) to an open neighborhood of the point
w. Also, for notation convenience, we define the following three
sets: A = {α : w = (x, z, α) ∈ U(w0)}, B = {(α, x) : w = (x, z, α) ∈

U(w0)}, and C = {(x, z) : w = (x, z, α) ∈ U(w0)}.

Theorem 1. Considering the function F (x, z, α) defined in Eq. (1)
and a point w0 = (x0, z0, α0) ∈ Rn+2, if the following conditions are
satisfied:

1. 0 < α < 1, ∀α ∈ A,
2. ζα(x) = ζ+

α (x), ∀(α, x) ∈ B,
3. ζα(x) is continuous in both α and x, ∀(α, x) ∈ B,
4. z0 ̸= ζα0 (x0),
5. The gradient of CVaR w.r.t x, i.e., ∇xqα(V (x)) is continuous in

both α and x, ∀(α, x) ∈ B,

we have α = α(x, z) continuously differentiable at all the points in C
and

∇x α(x, z) = −

(
1 − α

z − ζα(x)
· ∇x qα(V (x))

) ⏐⏐⏐⏐⏐
α=α(x,z)

,

∂

∂z
α(x, z) =

1 − α

z − ζα(x)

⏐⏐⏐⏐⏐
α=α(x,z)

.

Proof. We prove the results based on Implicit Function Theo-
rem [2]. We need to prove that all conditions of Implicit Function
Theorem are satisfied under our assumptions, and then use the
conclusions of Implicit Function Theorem to get the gradient.

First, we prove that the function F (x, z, α) defined in Eq. (1) has
continuous partial derivatives at U(w0). Combining the conditions
1 and 2, according to [9] (Proposition 13 on page 1458), we know
that the partial derivative of F (x, z, α) w.r.t α exists and
∂

∂α
F (x, z, α) =

1
(1 − α)2

E{[V (x) − ζα(x)]+}. (2)

Equivalently, we have

(1 − α) ·
∂

∂α
qα(V (x)) =

1
1 − α

E{[V (x) − ζα(x)]+}. (3)

In [9] (Theorem 10 on page 1454), we know that CVaR can also be
rewritten as

qα(V (x)) = z =
1

1 − α
E{[V (x) − ζα(x)]+} + ζα(x). (4)

Eqs. (3) and (4) imply that
∂

∂α
qα(V (x)) =

z − ζα(x)
1 − α

. (5)

Combining Eqs. (2) and (5), we get
∂

∂α
F (x, z, α) =

z − ζα(x)
1 − α

. (6)

From Eq. (6) and condition 3, we get ∂F
∂α

(x, z, α) continuous at
U(w0). Also ∇xF (x, z, α) = ∇xqα(V (x)) is continuous at U(w0) ac-
cording to condition 5. And it is easy to observe that ∂

∂z F (x, z, α) =

−1 is continuous at U(w0). So we have proved that the function
F (x, z, α) has continuous partial derivatives at U(w0).

Next, it is obvious that F (w0) = 0.
Finally, we have ∂F

∂α
(x0, z0, α0) ̸= 0 due to condition 4.

Thus, all conditions of Implicit Function Theorem [2] are satis-
fied. Based on conclusions of Implicit Function Theorem, we have
(i) α = α(x, z) continuously differentiable everywhere in the set C,
(ii) for each component xi of the vector x,
∂

∂xi
α(x, z) = −

∂F
∂xi

(x, z, α)
/ ∂F

∂α
(x, z, α)

=

(
−

1 − α

z − ζα(x)
·

∂

∂xi
qα(V (x))

) ⏐⏐⏐⏐⏐
α=α(x,z)

,

and (iii)
∂

∂z
α(x, z) = −

∂F
∂z

(x, z, α)
/ ∂F

∂α
(x, z, α)

=
1 − α

z − ζα(x)

⏐⏐⏐⏐⏐
α=α(x,z)

. □

Corollary 1. Suppose that all conditions of Theorem 1 are satisfied
and E[V (x)] < z < sup V (x). Then, gradient of bPOE, i.e., pz(V (x)),
w.r.t. x is continuous in both x and z, ∀(x, z) ∈ C and is presented with
the formula

pz(V (x)) =
pz(V (x))
z − ζα(x)

· ∇x qα(V (x))
⏐⏐⏐
α=1−pz (V (x))

.

Proof. The formula directly follows from the definition of bPOE,
since pz(V (x)) = 1 − α(x, z) for E[V (x)] < z < sup V (x). □

3. Subderivatives of general case

We first define quasigradient of a quasiconvex function as fol-
lows.
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Definition 7 ([1]). If f (x) is quasiconvex, then g is a quasigradient
at the point x0 if

gT (x − x0) ≥ 0 ⇒ f (x) ≥ f (x0).

As compared to Section 2, we assume the random function
f (x, y) is convexw.r.t. x ∈ X for every y ∈ Rm. In addition,wedonot
require the random variable V (x) = f (x, y) following a continuous
distribution. We still keep the restriction that E|V (x)| < ∞, i.e., for
each x ∈ X , V (x) = f (x, y) ∈ L1(Ω).

We describe our results in the following Section 3.1 and illus-
trate an example in Section 3.2.

3.1. The formula and proof

Proposition 1 ([4] Proposition 4.8 on page 1097). For some random
vector y, let f (x, y) be a convex function of x on a convex set X ⊆ Rn

and V (x) = f (x, y) ∈ L1(Ω) for all x ∈ X. Then, for a given z ∈ R,
pz(V (x)) is a quasiconvex function of x on X.

Proof. Convexity of f implies

f (xM , y) ≤ λf (x1, y) + (1 − λ)f (x2, y)

for xM = λx1+(1−λ)x2. Then, based on themonotonicity property
of pz(V ) as described in [4] (Proposition 3.6 on page 11), we have

pz(f (x
M , y)) ≤ pz(λf (x

1, y) + (1 − λ)f (x2, y)). (7)

In addition, because pz(V ) is a quasiconvex function ofV [4] (Propo-
sition 3.4 on page 10), (i.e., pz(λV 1

+ (1 − λ)V 2)) ≤ max{pz(V 1),
pz(V 2)},) we have

pz(λf (x
1,y) + (1−λ)f (x2,y))≤max{pz(f (x

1,y)), pz(f (x
2,y))}. (8)

Therefore, combining Eqs. (7) and (8), we have

pz(f (x
M , y)) ≤ max{pz(f (x

1, y)), pz(f (x
2, y))},

i.e., pz(f (x, y)) is a quasiconvex function of x. □

Theorem 2. When the random function f (x, y) is convex w.r.t x,
for bPOE’s mathematical expression pz(V (x)) = 1 − α(x, z), where
z ∈ (E[V (x)], sup V (x)), any subgradient of CVaR at a given point x0
is also a quasigradient of the corresponding bPOE.

Proof. First, based on our assumption that f (x, y) is convex in x,
according to [9] (Corollary 11 on page 1457), qα(V (x)) is convex
w.r.t. x as well. Now let g0 be any subgradient of CVaR at the point
x0, we have

qα0
(V (x)) ≥ qα0

(V (x0)) + gT
0 (x − x0), (9)

for all x ∈ X .
Note here that for any fixed z, we have qα(V (x)) = z is a

constant. This implies

qα0
(V (x0)) = qα(V (x)) = z (10)

for any given z. Then, if gT
0 (x−x0) ≥ 0, combining Eqs. (9) and (10),

we have

qα0
(V (x)) ≥ qα0

(V (x0)) = qα(V (x)).

Due to themonotonically increasing property of CVaR regarding α,
we have α(x0, z) ≥ α(x, z), i.e., 1 − α(x, z) ≥ 1 − α(x0, z).

We have proved that

gT
0 (x − x0) ≥ 0 ⇒ 1 − α(x, z) ≥ 1 − α(x0, z)

⇒ pz(V (x)) ≥ pz(V (x0))

for any given z, where the last one follows from the fact that
pz(V (x)) = 1 − α(x, z) when z ∈ (E[V (x)], sup V (x)). According
to the quasiconvexity of bPOE and Definition 7, we proved that
g0 is also a quasigradient of the corresponding bPOE, and thus the
theorem holds. □

3.2. An example

Here we provide an example to help illustrate the formula in
Theorem 2 by deriving subderivatives of bPOE with linear random
function and discrete distribution.

Assuming there are m scenarios for y each with the equal
probability 1/m and f (x, y) = xTy, here we describe the procedure
to obtain a set of quasigradients of bPOE.

First, for a given x0, we rank them values: f (x0, yi), i = 1, . . . ,m,
from the largest to the smallest and get the corresponding list:
y(1), y(2), . . . , y(m), where

f (x0, y(1)) ≥ f (x0, y(2)) ≥, . . . ,≥ f (x0, y(m)).

This list is not unique if the set {y ∈ Rm
|f (x0, y) = f (x0, y(i))}

contains more than one element for some i. But it will not affect
our procedure to get the quasigradients.

Then for a given x0 and α0, based on Definitions 1 and 5,
qα0

(V (x0)) = qα0
(f (x0, y)) is just the inner product of x0 and the

‘‘average’’ of some of the largest y(i)′s. The ‘‘average’’ is a subgra-
dient of CVaR at the point x0. This fact can be derived from the
general formula for the gradient of the CVaR deviation (which is
the difference of CVaR andmean value), see in [3] formula (9). From
Theorem 2, we know that it is also a quasigradient of bPOE at the
point x0.

Finally, we derive the specific mathematical expression for this
set of quasigradients of bPOE at the point x0. Let k∗

= min{k ∈

Z|k/m < 1 − α0, (k + 1)/m ≥ 1 − α0}, i.e., k∗
= ⌈(1 − α0)m⌉ −

1, where ⌈x⌉ = min {n ∈ Z|n ≥ x}. Then, this set of ‘‘averages’’
is{
g0 ∈ L1(Ω)

⏐⏐⏐⏐g0 =

k∗∑
i=1

1
(1−α0)m

y(i)+
1−α0−

∑k∗
i=1

1
m

1−α0
y(e)

}
,

where y(e) ∈
{
y ∈ L1(Ω)|f (x0, y) = f (x0, y(k∗+1))

}
.
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