%======================================================================= %To solve optimization problem: %Download and unpack the following zipped file from 'Data': %'Mat_data_problem_2_Korea_retail_bound_0_2_short.zip' %Run program 'problem_2_Korea_retail_bound_0_2_short.m' %======================================================================= clc; clear; %Load data: load('problem_2_Korea_retail_bound_0_2_short_data.mat') %Define options for PSG solver: stroptions.Stages = 10; %Define input arguments: string = 'var_dev'; w = 0.9984; %Solve optimization problems: [xout, fval, status, output] = riskprog(string, w, H, [], p, [], A, b, [], [], lb, ub, [], stroptions); %Display results: disp(' '); disp('Results: '); %Display status of optimization problem: disp(sprintf('status of optimization problem = %s', status)); %Display solving time: disp(sprintf('solving time = %g', output.solving_time)); %Display objective: disp(sprintf('objective = %g', fval)); %Display function: disp(sprintf('var_dev= %g', output.frval)); %Display left hand sides of linear inequality: disp(sprintf('linear inequality = %g', output.fAval)); %Display residual of linear inequality: disp(sprintf('residual of linear inequality = %g', output.rAval)); %Display optimal point: disp('optimal point = '); disp(xout');