Case study background and problem formulations
Instructions for optimization with PSG Run-File, PSG MATLAB Toolbox and PSG MATLAB Subroutines.
Sources of Data
• Toczek, J. Thinking Analytically. Cell towers. Analytics INFORMS, May/June (2016).
https://www.analytics-magazine.org/may-june-2016/1618-thinking-analytically-cell-towers.
PROBLEM 2: Control a fraction of uncovered houses based on VaR function in constraint
Minimize linear (number of allocated Cell Towers)
subject to
Var_risk <= Const2 (constraint on the fraction of uncovered houses)
——————————————————————–
Var_risk = Value-at-Risk
——————————————————————–
PROBLEM 3: Minimize a fraction of uncovered houses using Probability function in objective
Minimize Pr_pen (fraction of uncovered houses)
subject to
linear <= Const3 (constraint on the number of Cell Towers to be allocated)
——————————————————————–
Pr_pen = Probability of Exceedance
——————————————————————–
CASE STUDY SUMMARY
This Case study demonstrates a scenario based optimization framework for solving Partial Set Covering problem and Maximal Covering Location problem. We use Probability of Exceedance (POE) and Value-at-Risk (VaR) functions to bound and minimize some fraction of uncovered nodes. Although the suggested approach is quite general, it is demonstrated, in this case study, with the problem of “Allocation of Cell Towers to Service Houses”.
We solved a small problem (10×10) for covering 41 houses by 1 and 2 Cell Towers. Also, we generated and solved a big (300×300) problem with randomly distributed 45,152 houses.
We found that covering houses by 2 Cell Towers is a much more challenging combinatorial problem (time of solving increases dramatically) compared with covering by 1 Cell Tower.
References
• Toregas C., Swain R., ReVelle C. and Bergman L. (1971): The location of emergency service facilities. Operations Research, 19(6), 1363-1373.
• Moshkov M. Ju., Piliszczuk M. and Zielosko B. (2008): Partial Covers, Reducts and Decision Rules. Studies in Computational Intelligence, Springer-Verlag, V.145, 7-49.
• Church, R., ReVelle, C. S. (1974): The Maximal Covering Location Problem. Papers in Regional Science 32 (1), 101–118.
• Daskin, M. S. (1983): A Maximum Expected Covering Location Model: Formulation, Properties and Heuristic Solution. Transportation Science 17 (1), 48-70.
Sources of Data
• Toczek, J. Thinking Analytically. Cell towers. Analytics INFORMS, May/June (2016).
https://www.analytics-magazine.org/may-june-2016/1618-thinking-analytically-cell-towers.
Data for 300×300 problem is generated at AOD company.
PROBLEM 1: Control a fraction of uncovered houses using Probability function in constraint
Minimize linear (number of allocated Cell Towers)
subject to
Pr_pen <= Const1 (constraint on the fraction of uncovered houses)
——————————————————————–
Pr_pen = Probability of Exceedance
——————————————————————–
Minimize linear (number of allocated Cell Towers)
subject to
Pr_pen <= Const1 (constraint on the fraction of uncovered houses)
——————————————————————–
Pr_pen = Probability of Exceedance
——————————————————————–
Problem “problem_CELL_Towers_Pr”
# of Variables | # of Scenarios | Objective Value | Gap | Solving Time, PC 3.4GHz (sec) | ||||
Dataset1 | 98 | 41 | 6.0 | 0.0 | 0.27 | |||
---|---|---|---|---|---|---|---|---|
Environments | ||||||||
Run-File | Problem Statement | Data | Solution | |||||
Matlab Toolbox | Data | |||||||
Matlab Subroutines | Matlab Code | Data |
Download other datasets in Run-File Environment.
Instructions for importing problems from Run-File to PSG MATLAB.
Problem Datasets | # of Variables | # of Scenarios | Objective Value | Gap | Solving Time (sec), PC 3.4GHz | |||
---|---|---|---|---|---|---|---|---|
Dataset2 | ProblemStatement | Data | Solution | 98 | 41 | 13 | 0 | 0.24 |
Dataset3 | ProblemStatement | Data | Solution | 89776 | 45152 | 4869 | 0 | 43.01 |
Dataset4 | ProblemStatement | Data | Solution | 89776 | 45152 | 11320 | 786 | 7200.15 |
PROBLEM 2: Control a fraction of uncovered houses based on VaR function in constraint
Minimize linear (number of allocated Cell Towers)
subject to
Var_risk <= Const2 (constraint on the fraction of uncovered houses)
——————————————————————–
Var_risk = Value-at-Risk
——————————————————————–
Problem “problem_CELL_Towers_Var”
# of Variables | # of Scenarios | Objective Value | Gap | Solving Time, PC 3.4GHz (sec) | ||||
Dataset1 | 98 | 41 | 6 | 0.0 | 0.24 | |||
---|---|---|---|---|---|---|---|---|
Environments | ||||||||
Run-File | Problem Statement | Data | Solution | |||||
Matlab Toolbox | Data | |||||||
Matlab Subroutines | Matlab Code | Data |
Download other datasets in Run-File Environment.
Instructions for importing problems from Run-File to PSG MATLAB.
Problem Datasets | # of Variables | # of Scenarios | Objective Value | Gap | Solving Time (sec), PC 3.4GHz | |||
---|---|---|---|---|---|---|---|---|
Dataset2 | ProblemStatement | Data | Solution | 98 | 41 | 13 | 0 | 0.25 |
Dataset3 | ProblemStatement | Data | Solution | 89776 | 45152 | 4869 | 0 | 38.95 |
Dataset4 | ProblemStatement | Data | Solution | 89776 | 45152 | 11323 | 788 | 10007.44 |
PROBLEM 3: Minimize a fraction of uncovered houses using Probability function in objective
Minimize Pr_pen (fraction of uncovered houses)
subject to
linear <= Const3 (constraint on the number of Cell Towers to be allocated)
——————————————————————–
Pr_pen = Probability of Exceedance
——————————————————————–
Problem “problem_min_PR_CELL_Towers”
# of Variables | # of Scenarios | Objective Value | Gap | Solving Time, PC 3.4GHz (sec) | ||||
Dataset1 | 98 | 41 | 0.2439 | 0 | 0.25 | |||
---|---|---|---|---|---|---|---|---|
Environments | ||||||||
Run-File | Problem Statement | Data | Solution | |||||
Matlab Toolbox | Data | |||||||
Matlab Subroutines | Matlab Code | Data |
Download other datasets in Run-File Environment.
Instructions for importing problems from Run-File to PSG MATLAB.
Problem Datasets | # of Variables | # of Scenarios | Objective Value | Gap | Solving Time (sec), PC 3.4GHz | |||
---|---|---|---|---|---|---|---|---|
Dataset2 | ProblemStatement | Data | Solution | 98 | 41 | 0.26829 | 0 | 0.26 |
Dataset3 | ProblemStatement | Data | Solution | 89776 | 45152 | 0.2999867 | 0 | 93.34 |
Dataset4 | ProblemStatement | Data | Solution | 89776 | 45152 | 0.2964 | 0.0386 | 24582.72 |
CASE STUDY SUMMARY
This Case study demonstrates a scenario based optimization framework for solving Partial Set Covering problem and Maximal Covering Location problem. We use Probability of Exceedance (POE) and Value-at-Risk (VaR) functions to bound and minimize some fraction of uncovered nodes. Although the suggested approach is quite general, it is demonstrated, in this case study, with the problem of “Allocation of Cell Towers to Service Houses”.
We solved a small problem (10×10) for covering 41 houses by 1 and 2 Cell Towers. Also, we generated and solved a big (300×300) problem with randomly distributed 45,152 houses.
We found that covering houses by 2 Cell Towers is a much more challenging combinatorial problem (time of solving increases dramatically) compared with covering by 1 Cell Tower.
References
• Toregas C., Swain R., ReVelle C. and Bergman L. (1971): The location of emergency service facilities. Operations Research, 19(6), 1363-1373.
• Moshkov M. Ju., Piliszczuk M. and Zielosko B. (2008): Partial Covers, Reducts and Decision Rules. Studies in Computational Intelligence, Springer-Verlag, V.145, 7-49.
• Church, R., ReVelle, C. S. (1974): The Maximal Covering Location Problem. Papers in Regional Science 32 (1), 101–118.
• Daskin, M. S. (1983): A Maximum Expected Covering Location Model: Formulation, Properties and Heuristic Solution. Transportation Science 17 (1), 48-70.